
Autonomous and Adaptive
Systems

Project Guidelines
Giorgio Franceschelli

PhD Student @UNIBO
giorgio.franceschelli@unibo.it
giorgiofranceschelli.github.io

mailto:giorgio.franceschelli@unibo.it
https://giorgiofranceschelli.github.io/


Mini-Project for the Exam

You need to develop a project and:
• Write an up to 6-page short report (paper-style) to be submitted in advance (to
me: giorgio.franceschelli@unibo.it) and a repo with the code (either a notebook
or .py file).

• You should not send the code (especially a zip file), but please send a link to a
repository (e.g., GitHub).

• The projectmust be submitted before the closing date for signing-up for
the exam.

• Prepare max 3 slides (and ideally a working demo) to be discussed during the oral
exam.

The project will contribute to 1/3 of the final mark. So, in terms of complexity,
the project is equivalent to 2-3 credits.

mailto:giorgio.franceschelli@unibo.it


Mini-Project for the Exam

The project must be of one of the following two types. Either:
• A project based on the procgen environment; or
• A project based on a custom environment designed by you.



Mini-Project for the Exam

The project must be of one of the following two types:
• A project based on the procgen environment;
• A project based on a custom environment designed by you.



ProcGen

ProcGen is a suite of 16 procedurally-
generated environments that
represent the most famous
benchmark for generalization.
Its goal is to provide a direct measure
of how an agent learns generalizable
skills, i.e., skills useful across
different versions of the same game.



ProcGen

Procedurally generated = generated algorithmically through a combination
of human-generated content (the building blocks of the games) and
computer-generated randomness.

In this way, each episode is different! All possible episodes share the same
characteristics (e.g. same reward functions, same type of obstacles, ecc.) but
the sequences of actions required to solve them are different.



ProcGen

If all episodes are different but require the same skills, they are suitable for
evaluating generalization capabilities: the agent cannot just learn a sequence
of actions, it must learn what it means to solve that family of episodes.

More practically, the skills learned to solve a sub-set of all possible episodes
should allow the agent to solve the entire set of possible episodes!

Therefore, you should train your agent constraining the environment to a
fixed sub-set of episodes (also called levels), and then you should evaluate it
on a version of the same environment without that constraint.



ProcGen with gym

>>> pip install gym # please note: gym, not gymnasium
>>> pip install procgen

>>> import gym
>>> game = ‘coinrun’ # or any other procgen game
>>> env = gym.make(‘procgen:procgen-’+game+‘-v0’)

And then you can use it as a classic gym environment!
In any case, check the documentation:
https://github.com/openai/procgen

https://github.com/openai/procgen


ProcGen with gym

Apart from the env_name, make() accepts several interesting arguments.:
• num_levels=0 # the number of unique levels that can be
generated (0 for unlimited levels).
• start_level=0 # the first level to be played (to be set
with rand_seed for reproducibility) .
• distribution_mode=‘hard’ # the complexity (i.e. number of
timesteps required) of the game – I suggest you ‘easy’ mode.
• use_backgrounds=True # whether to use human-designed
backgrounds (with colors and variations across levels) or
pure black backgrounds (useful for debug or with limited
compute resources).

And many others (see https://github.com/openai/procgen).

https://github.com/openai/procgen


ProcGen with gym

Usually, training considers 200 levels in easy mode and 500 in hard mode.
For example:

>>> import gym
>>> game = ‘coinrun’
>>> seed = 1
>>> train_env = gym.make(‘procgen:procgen-’+game+‘-v0’, 
num_levels=200, start_level=seed, rand_seed=seed, 
distribution_mode=‘easy’)
>>> test_env = gym.make(‘procgen:procgen-’+game+‘-v0’, 
start_level=seed, rand_seed=seed, distribution_mode=‘easy’)



ProcGen – Final Notes
ProcGen is a very hard benchmark – we do not expect you to solve all games or
reach state-of-the-art results.

You will have to implement a (fairly) advanced RL algorithm, which at least is able
to outperform a random agent on a sub-set of the 16 environments.

Total reward can be used a performance indicator, but others are possible (see
papers discussed during the lectures).

Hint: start with a very simple configuration (e.g. no background, 1 level) and once
you are confident your agent is learning properly, increase difficulty!

From your code+report we expect to see a description of what you have done, your
design choices, a presentation and discussion of the key results.



Mini-Project for the Exam

The project must be of one of the following two types:
• A project based on the procgen environment;
• A project based on a custom environment designed by you.



Custom Environments

As an alternative, you can create your own environment in a gym-like style
to be solved by any RL algorithm.
The custom environment can implement a board game, a card game, a maze-
like or any other sort of video game, but it can also encapsulate other tasks to
be solved with RL, e.g. generative modeling.
The only requirement for the environment is to be new (not already
available online) and not too simple (at least more complex than let’s say
tic-tac-toe).
The degree of complexity of the environment will be taken into consideration
for the assessment.



Custom Environments with gym

A custom environment should work exactly as a classic environment. The
best way to define a new one is by sub-classing gym.Env.
You will then need to define at least reset() and step() methods
complying with the standard gym signatures plus action_space and
observation_space attributes.
While I suggest you to use the original gym, you can also use gymnasium by
sticking with the new signature for step().

Here to check for its implementation and documentation:
https://github.com/openai/gym/blob/master/gym/core.py

https://github.com/openai/gym/blob/master/gym/core.py


Custom Environments – Final Notes

Defining a working custom environment is not as simple as it seems – the
same state can be represented in different ways, there may be invalid actions
to deal with, several reward functions can be used for the same problem, ecc.
In addition, you also need to implement an RL algorithm, even a simple one,
to learn how to solve your environment (as a demonstration of the
correctness of your custom environment).
From your code+report I expect to see what you have done for both
environment and agent, with a focus on the problem you have modeled and
the motivations for your implementation choices.


