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 is called the activation function,  is usually called the biasf b
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Activations Functions

‣ They are generally used to add non-linearity. 

‣ Examples: 

‣ Rectified Linear Unit: it returns the max between 0 and the 
value in input. In other words, given the value  in input it 
returns .  

‣ Logistic sigmoid: given the value in input , it returns 

. 

‣ Arctan: given the value in input , it returns .

z
max(0,z)

z
1

1 + ez

z tan−1(z)
Credit: Wikimedia
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Note that here the function in input of relu is 1-dimensional.
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Softmax Function

‣ Another function that we will use is softmax.  

‣ But please note that softmax is not like the activation functions that we discussed 
before. The activations functions that we discussed before take in input real 
numbers and returns a real number. 

‣ A softmax function receives in input a vector of real numbers of dimension  and 
returns a vector of real numbers of dimension . 

‣ Softmax: given a vector of real numbers in input  of dimension , it normalises it 
into a probability distribution consisting of  probabilities proportional to the 
exponentials of each element  of the vector . More formally, 

 for .

n
n

z n
n

zi z
softmax(z)i =

ezi

∑n
j=1 ezj

i = 1,..n



Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Gradient-based Optimization

‣We will now discuss a high-level description of the learning process of the 
network, usually called gradient-based optimization. 

‣ Each neural layer transforms his input layer as follows: 

 

‣ And in the case of a relu function, we will have 

 

‣ Note that this is a simplified notation for one layer, it should be  for layer 
.

output = f(w1x1 + . . . + wnxn + b)

output = relu(w1x1 + . . . + wnxn + b)

w1,i
i
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Gradient-based Optimisation

‣ The learning is based on the gradual adjustment of the weight based on a 
feedback signal, i.e., the loss described above. 

‣ The training is based on the following training loop: 

‣ Draw a batch of training examples  and corresponding targets . 

‣ Run the network on  (forward pass) to obtain predictions . 

‣ Compute the loss of the network on the batch, a measure of the mismatch 
between  and . 

‣ Update all weights of the networks in a way that reduces the loss of this 
batch.

x ytarget

x ypred

ypred ytarget
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Stochastic Gradient Descent

‣ Given a differentiable function, it’s theoretically possible to find its 
minimum analytically. 

‣ However, the function is intractable for real networks. The only way is 
to try to approximate the weights using the procedure described 
above. 

‣ More precisely, since it is a differentiable function, we can use the 
gradient, which provides an efficient way to perform the correction 
mention before.
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Gradient-based Optimisation

Credit: Sebastian Raschka
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Stochastic Gradient Descent

‣ More formally: 

‣ Draw a batch of training example  and corresponding targets . 

‣ Run the network on  (forward pass) to obtain predictions . 

‣ Compute the loss of the network on the batch, a measure of the mismatch between  and . 

‣ Compute the gradient of the loss with regard to the network’s parameters (backward pass). 

‣ Move the parameters in the opposite direction from the gradient with:  

where  is the loss (cost) function. 

‣ If you  have a batch of samples of dimension : 

 for all the  samples of the batch.

x ytarget

x ypred

ypred ytarget

wj ← wj + Δwj = wj − η
∂J
∂wj

J

k

wj ← wj + Δwj = wj − η average(
∂Jk

∂wj
) k
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Stochastic Gradient Descent

‣ This is called the mini-batch stochastic gradient descent (mini-batch SGD).  

‣ The loss function  is a function of , which is a function of the weights. 

‣ Essentially, you calculate the value , which is a function of the weights of the network.  

‣ Therefore, by definition, the derivative of the loss function that you are going to apply will 
be a function of the weights. 

‣ The term stochastic refers to the fact that each batch of data is drawn randomly. 

‣ The algorithm described above was based on a simplified model with a single function in a 
sense.  

‣ You can think about a network composed of three layers, e.g., three tensor operations on the 
network itself.

J f(x)

f(x)
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https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
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https://www.cs.umd.edu/~tomg/projects/landscapes/ 
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Backpropagation Algorithm

‣ Suppose that you have three tensor operations/layers  with weights , 
 and  respectively for the first, second, third layer. You will have the 

following function: 

 

with  the rightmost function/layer and so on. In other words, the input layer is 
connected to , which is connected to , which is connected to , which 
returns the final result. 

‣ A network is a sort of chain of layers. You can derive the value of the “correction” 
by applying the chain rule of the derivatives backwards. 

‣ Remember the chain rule .

f, g, h W1

W2 W3

ypred = f(W1, W2, W3, x) = f(W3, g(W2, h(W1, x)))

f()
h() g() f()

( f(g(x)))′￼= f′￼(g(x))g′￼(x)



Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Backpropagation Algorithm

‣ The update of the weights starts from the right-most layer back to the left-most layer. For 
this reason, this is called backpropagation algorithm. 

‣ More specifically, backpropagation starts with the calculation of the gradient of final loss 
value and works backwards from the right-most layers to the left-most layers, applying 
the chain rule to compute the contribution that each weight had in the loss value. 

‣ Nowadays, we do not calculate the partial derivates manually, but we use frameworks 
like TensorFlow and Pytorch that support symbolic differentiation for the calculation of 
the gradient. 

‣ TensorFlow and PyTorch support the automatic updates of the weights described above. 

‣ More theoretical details can be found in: 

   Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press. 2016.
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