
Autonomous and Adaptive Systems

Introduction to Deep Learning and
Neural Architectures III

Mirco Musolesi

mircomusolesi@acm.org

mailto:mircomusolesi@acm.org

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs

0
1
2
3
4
5
6
7
8
9

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4 OutputsInputs

0 0
1 0.05
2 0.1
3 0.05
4 0.1
5 0.5
6 0.05
7 0.05
8 0
9 0

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 1 Layer 1 Layer 1 OutputsInputs

Q(s, a)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 1 Layer 1 Layer 1 OutputsInputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4

The goal is to find
the right values for

these weights.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Optimizer

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Layer 1 Layer 2 Layer 3 Layer 4

Outputs

“Predictions”

Inputs

Weights

Layer 1

Weights

Layer 2

Weights

Layer 3

Weights

Layer 4 Loss Function

True

Targets

Loss

Score

Optimizer

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Deep Neural Networks

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Nodes/Units/Neurons

f(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

 is called the activation function, is usually called the biasf b

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Activations Functions

‣ They are generally used to add non-linearity.

‣ Examples:

‣ Rectified Linear Unit: it returns the max between 0 and the
value in input. In other words, given the value in input it
returns .

‣ Logistic sigmoid: given the value in input , it returns

.

‣ Arctan: given the value in input , it returns .

z
max(0,z)

z
1

1 + ez

z tan−1(z)
Credit: Wikimedia

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Nodes/Units/Neurons

relu(w1x1 + . . . + wnxn + b)

x1

x2

. . .

xn

y

Note that here the function in input of relu is 1-dimensional.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Softmax Function

‣ Another function that we will use is softmax.

‣ But please note that softmax is not like the activation functions that we discussed
before. The activations functions that we discussed before take in input real
numbers and returns a real number.

‣ A softmax function receives in input a vector of real numbers of dimension and
returns a vector of real numbers of dimension .

‣ Softmax: given a vector of real numbers in input of dimension , it normalises it
into a probability distribution consisting of probabilities proportional to the
exponentials of each element of the vector . More formally,

 for .

n
n

z n
n

zi z
softmax(z)i =

ezi

∑n
j=1 ezj

i = 1,..n

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Gradient-based Optimization

‣We will now discuss a high-level description of the learning process of the
network, usually called gradient-based optimization.

‣ Each neural layer transforms his input layer as follows:

‣ And in the case of a relu function, we will have

‣ Note that this is a simplified notation for one layer, it should be for layer
.

output = f(w1x1 + . . . + wnxn + b)

output = relu(w1x1 + . . . + wnxn + b)

w1,i
i

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Gradient-based Optimisation

‣ The learning is based on the gradual adjustment of the weight based on a
feedback signal, i.e., the loss described above.

‣ The training is based on the following training loop:

‣ Draw a batch of training examples and corresponding targets .

‣ Run the network on (forward pass) to obtain predictions .

‣ Compute the loss of the network on the batch, a measure of the mismatch
between and .

‣ Update all weights of the networks in a way that reduces the loss of this
batch.

x ytarget

x ypred

ypred ytarget

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Stochastic Gradient Descent

‣ Given a differentiable function, it’s theoretically possible to find its
minimum analytically.

‣ However, the function is intractable for real networks. The only way is
to try to approximate the weights using the procedure described
above.

‣ More precisely, since it is a differentiable function, we can use the
gradient, which provides an efficient way to perform the correction
mention before.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Gradient-based Optimisation

Credit: Sebastian Raschka

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Stochastic Gradient Descent

‣ More formally:

‣ Draw a batch of training example and corresponding targets .

‣ Run the network on (forward pass) to obtain predictions .

‣ Compute the loss of the network on the batch, a measure of the mismatch between and .

‣ Compute the gradient of the loss with regard to the network’s parameters (backward pass).

‣ Move the parameters in the opposite direction from the gradient with:

where is the loss (cost) function.

‣ If you have a batch of samples of dimension :

 for all the samples of the batch.

x ytarget

x ypred

ypred ytarget

wj ← wj + Δwj = wj − η
∂J
∂wj

J

k

wj ← wj + Δwj = wj − η average(
∂Jk

∂wj
) k

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Stochastic Gradient Descent

‣ This is called the mini-batch stochastic gradient descent (mini-batch SGD).

‣ The loss function is a function of , which is a function of the weights.

‣ Essentially, you calculate the value , which is a function of the weights of the network.

‣ Therefore, by definition, the derivative of the loss function that you are going to apply will
be a function of the weights.

‣ The term stochastic refers to the fact that each batch of data is drawn randomly.

‣ The algorithm described above was based on a simplified model with a single function in a
sense.

‣ You can think about a network composed of three layers, e.g., three tensor operations on the
network itself.

J f(x)

f(x)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

https://www.cs.umd.edu/~tomg/projects/landscapes/

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Backpropagation Algorithm

‣ Suppose that you have three tensor operations/layers with weights ,
 and respectively for the first, second, third layer. You will have the

following function:

with the rightmost function/layer and so on. In other words, the input layer is
connected to , which is connected to , which is connected to , which
returns the final result.

‣ A network is a sort of chain of layers. You can derive the value of the “correction”
by applying the chain rule of the derivatives backwards.

‣ Remember the chain rule .

f, g, h W1

W2 W3

ypred = f(W1, W2, W3, x) = f(W3, g(W2, h(W1, x)))

f()
h() g() f()

(f(g(x)))′￼= f′￼(g(x))g′￼(x)

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

Backpropagation Algorithm

‣ The update of the weights starts from the right-most layer back to the left-most layer. For
this reason, this is called backpropagation algorithm.

‣ More specifically, backpropagation starts with the calculation of the gradient of final loss
value and works backwards from the right-most layers to the left-most layers, applying
the chain rule to compute the contribution that each weight had in the loss value.

‣ Nowadays, we do not calculate the partial derivates manually, but we use frameworks
like TensorFlow and Pytorch that support symbolic differentiation for the calculation of
the gradient.

‣ TensorFlow and PyTorch support the automatic updates of the weights described above.

‣ More theoretical details can be found in:

 Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press. 2016.

Autonomous and Adaptive Systems 2024-2025 Mirco Musolesi

References

‣ Chapter 1 of Ian Goodfellow, Yoshua Bengio and Aaron Courville.
Deep Learning. MIT Press. 2016.

‣ Chapter 2 of Francois Chollet. Deep Learning with Python. Manning
2022.

