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Abstract. Location information extracted from mobile devices has been
largely exploited to reveal our routines, significant places, and interests,
just to name a few. Given the sensitivity of the information it reveals,
location access is protected by mobile operating systems and users have
control over which applications can access it. We argue that applications
can still infer the coarse-grain location information by using alternative
sensors that are available in off-the-shelf mobile devices that do not re-
quire any permissions from the users.

In this paper we present a zero-permission attack based on the use of
the in-built magnetometer, considering a variety of methods for iden-
tifying location-types from their magnetic signature. We implement the
proposed approach by using four different techniques for time-series clas-
sification. In order to evaluate the approach, we conduct an in-the-wild
study to collect a dataset of nearly 70 hours of magnetometer readings
with six different phones at 66 locations, each accompanied by a label
that classifies it as belonging to one of six selected categories. Finally,
using this dataset, we quantify the performance of all models based on
two evaluation criteria: (i) leave-a-place-out (using the test data collected
from an unknown place), and (ii) leave-a-device-out (using the test data
collected from an unknown device) showing that we are able to achieve
40.5% and 39.5% accuracy in classifying the location-type for each eval-
uation criteria respectively against a random baseline of approximately
16.7% for both of them.
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1 Introduction

Mobile phones are equipped with a variety of sensor used by applications to
obtain a user’s contextual information (e.g., location, humidity, acceleration,
and network connectivity) to support a variety of applications and services [11].
However, the sensors embedded in smartphones have also unintentionally be-
come the source of information leaks that might adversely impact the privacy
of their owners. Indeed, information extracted through sensors can be used to
identify users or devices [20, 42, 57, 31, 36, 54], and infer their behavioral patterns,
interests, personal preferences [40], and even their health condition [59]. The fact
that information can automatically be extracted by means of passive sensors is
generally perceived negatively by users [10, 18, 45, 46].

In order to mitigate the privacy risks, mobile operating systems have adopted
a permission-based paradigm where each application must request access to any
of the protected resources on the phone, including camera, microphone, location,
and contact list. Each permission is flagged as sensitive depending on the invasive
nature of the resource and the importance of the data it might reveal; therefore,
the permission to answer phone calls is more restricted as compared to the
permission that allows for access to the camera of the device. Users can choose
to disable system-wide access to a certain type of information, or control it at
the application level where access to some information can be revoked.

Location is one of the information types that is protected by such permission
systems. Location data has been shown to be sensitive for users as it can be used
to track and profile individuals (e.g., for advertising purposes). In particular,
it can be used to infer a user’s identity [19]; it can reveal a user’s significant
locations and points-of-interests (e.g., home location, work location, morning
coffee shop, events attended) along with their transportation routine and use
them to predict trajectory and future locations [33]; and finally, it can be used
to detect the general behavior of a single user and group users based on the
similarity across their interests [32].

Restrictions placed on location data have led to the development of alter-
native methods that aim to derive location from sensors not protected under
permission systems. Currently, Android and iOS application can access the gy-
roscope, accelerometer, and magnetometer sensors without requiring the user
permission. These methods generally combine previously acquired environmen-
tal information (e.g., produced by surveying a location) with real-time sensor
readings to ascertain the user’s current position [50]. In particular, Wang et al.
combine the accelerometer and gyroscope in order to localize users [49] and
Chen et al. combine WiFi signal strength with FM radio signals to determine a
users’ location [14].

In this paper, we show how one can leverage one of these sensors, which is not
subjected to any permission, in order to infer the type of the location where the
user is currently situated. We are not the first to propose such a solution. How-
ever, where previous studies focus on mapping locations to pinpoint position, we
present a method that reduces the need for surveying the target locations (i.e.,
locations where localization will take place). We also require that the identifica-
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Fig. 1: Overview of the zero-permission attack leveraging the magnetometer of
mobile devices to capture magnetic field readings.

tion process relies exclusively on data that can be accessed without permissions,
thus devising a zero-permission localization attack. Our approach exploits the
readings captured by the magnetometer, present in most smartphones today, to
infer a type of location from their magnetic signature. We present four different
methods for time-series analysis of magnetic readings: (i) full signal matching,
(ii) statistical descriptors, (iii) automated feature extraction, and (iv) shapelets
analysis [55]. We compare the two traditional methods of statistical features
and full signal pattern matching with two novel methods: convolutional neural
networks through One Shot Learning and shapelets, that is a short time-series
capturing repeated patterns observed in magnetic field readings. The use of dif-
ferent techniques for analyzing time-series data enables us to establish baselines
and compare their performance when applied to this problem. An overview of the
attack is presented in Figure 1. In order to evaluate our approach we collect a la-
beled dataset, used as ground truth, by conducting an in-the-wild measurement
study and sampling the magnetic field at different locations over a metropolitan
area. We collect readings from off-the-shelf smartphones at ten different types of
locations: long-distance train stations, urban train stations (i.e., subways), parks,
bridges, coffee shops, halls, laundromats, bus stops, parking lots, and gyms. The
places were chosen as alternatives for three groups: indoor environments, out-
door environments, and environments that contain clearly distinguishable events
(e.g., trains passing by). For each of the 10 location-types, we collect 10 minutes
of magnetic field readings sampled at 1 Hz from five different phones at 11 lo-
cations. The entire dataset therefore consists of a total of 91 hours of readings.
We evaluate the prediction performance of our four methods by first identifying
a location-type from the magnetic readings of an unknown location and second,
by identifying a location-type from the magnetic readings of an unknown device.
We summarize our main contributions as follows:

– We collected over 91 hours of labeled magnetic field readings from various
locations across a major metropolitan area. We show that location-types
can be inferred from magnetic field readings available without any system
permissions across a wide range of smartphones.

– We compare the performance of four methods for time-series classification
in identifying location-types. We perform an in-depth analysis of the choice
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of the values of the parameters for each methods, providing a methodology
for their selection.

– Through our proof-of-concept implementation and in-the-wild study across
different locations, we demonstrate the feasibility of the location attack.

2 Overview

In this section we introduce the key concepts and present the main motivations
for our work.

2.1 Key Concepts

In writing this work, we take ownership of some words and create new concepts.
We define them as follows:
Location-Type. As defined in [47], localization is the problem of ascertaining
the position of an agent relative to a map. In this work, we address the prob-
lem of localization from a novel perspective, where our primary interest is to
understand the environmental similarities between places. Location-type is the
name we assign to the top level of a two-tier hierarchy (the lower level being the
distinct places). Locations are grouped based on common environmental charac-
teristics including, building structure and materials, human movement patterns,
and events (defined later in this section).
Magnetic Field. The magnetic field is the combination of geomagnetic and
electromagnetic phenomena. Geomagnetic fields describe the naturally occurring
(magnetic) field emitted by the planet’s core and the local variations caused by
ferromagnetic materials such as iron, cobalt, or nickel [23, 27]. As an example,
the steel structure of a building and the movement of metal objects (e.g., a car
or a train) will distort the planet’s field.
Time-Series. A time-series is an ordered set of values (i.e., the magnetic field)
sampled at a fixed interval that, together, form a single observation or read-
ing [21]. The length of the time series is equal to the number of values available
in that observation. Subsets or samples of a time-series with more than one el-
ement (which will be associated to shapelets later) are time-series observations
in their own right, with the distinction that the length of the subset must be no
greater than the length of the originating observation(s).
Events. We define events as the dynamic extension of landmarks for time-series
data. While a landmark represents a set of structural characteristics of an envi-
ronment (e.g., the corner of a building, the presences of a fountain, the electrical
wiring of a room), an event represents a transient occurrence (e.g., the movement
of a train or car, riding on an escalator, or walking by a person). Unlike land-
marks, which are unique to a place, events can be identified in places described
by a location-type. In our analysis, we make the assumption that locations that
belong to the same type are characterized by similar events, which will be asso-
ciated to specific shapes in the time-series of the magnetic field.
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2.2 Motivation

Information about a user’s physical location provides private insights about the
users themselves. Indeed, applications installed on the users’ smartphones can
access location data provided by location services using the GPS chip and the
cellular network through permission-based controls offered by the operating sys-
tem. It is left to the user’s discretion to grant location access to any application
that requests it [4, 2, 35].

On the other hand, side-channel, zero-permission attacks have been exploited
to infer users’ location using alternate approaches without requesting access to
the corresponding GPS and cellular permissions. They rely on constructing,
for each target location, a map of the environmental characteristics measured
by the sensors embedded in the smartphone. These sensors, whose access does
not require any specific permissions, include primarily the magnetometer, the
accelerometer and the gyroscope [26, 34, 38, 39, 58]. In practice, given a target
location (e.g., an area or a building), a map can be built by recording sets of
sensor measurements (e.g., acceleration from the accelerometer and/or magnetic
field from the magnetometer) that are associated to precise coordinates within
the location being surveyed.

As opposed to the GPS module, the magnetometer is a low-power sensor
and accessing readings from a magnetometer does not require any notification to
users (or permissions) in either Android or iOS. Moreover, once the information is
processed it can be used to protect the privacy of users: while the GPS provides
detailed location information (accurate to centimeters of the true position), a
generic localization method based on magnetic field could potentially be used
to verify that a user is within the premises of a certain type of place or in a
specific environment without disclosing exact information. Both marketing and
verification applications could obtain the information they need without being
invasive with regards to user location.

3 Related Work

Our work is related to the general problem of localization. According to the
taxonomy presented by Thrun et al., we address a global localization problem in
a dynamic environment where we passively monitor users [47]. In this context,
localization of an autonomous entity, referred in the literature as “agent", can
only be carried out through sensor readings, either by matching current readings
against an up-to-date map or through geometric calculations that determine the
unknown position of the agent against a known marker. In the following, we
discuss different approaches and contextualize this work with respect to the
literature.

3.1 Model-Based Localization

Model-based techniques include methods where the movement of the user is cal-
culated from a sensor, including GPS, as well as cellular and WiFi signals. They
are by far the most common and wide spread techniques used for localization.
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Mobile operating systems give developers the option to localize users based
exclusively on cellular radio signal strength. The position of the user is inferred by
extracting features from a signal and comparing them to an established ground
truth. As an example, network signal strength is one of the most commonly used
features and the actual position of the user is computed from the triangulation
between multiple cellular base stations and the signal received from each station
by the device [48].

These methods can be applied to indoor environments as well. Localization
from WiFi access points using received signal strength has been found to be
accurate enough to track users inside buildings with the capability of distin-
guishing between adjacent rooms [12, 15, 53]. The method only requires WiFi
signal strength and the layouts of the building so as to localize a user. The
primary limitation of these methods is that the signal strength calculation is
typically carried out on the device and continuous tracking drains the resources
of a phone [15].

Model-based techniques are used as a means of error correction for dead-
reckoning schemes. Urban dead-reckoning is the process by which a user’s loca-
tion is tracked by measuring the side-effects of motion, usually through the use
of the compass and the gyroscope. It has been shown that urban dead reckon-
ing accumulates errors of up to 100 meters in 6 minutes of collected data [49].
Indoor localization methods often combine dead reckoning with model-based
localization to maintain acceptable tracking accuracy [51, 52].

The error correction mechanism is obtained from a variety of sources. For
example, Haverinen and Kemppainen use GPS readings to mark the entrance of
the building and again collect active GPS readings from open areas or windows
to validate and correct their location [27]. Wang et al. collect magnetic field
readings along with gyration and acceleration information from different users
to find landmarks and correct the error for individual users [49].

3.2 Fingerprint-Based Localization

Fingerprint-based techniques include all methods where a site (or any other ge-
ographical location) is surveyed in order to build a map which is then used to
pinpoint the location of a user. Fingerprint-based techniques are costly with
respect to collection and maintenance of the maps. Active areas of research in
this field are mainly centered on reducing the overall financial cost necessary for
building maps primarily through leveraging crowd-sourcing techniques where
data is passively collected by a large population [44]. In the following, we detail
the approaches specific to the type of environment, whether it is indoor or out-
door. This type of techniques have been used successfully to fingerprint devices
themselves (see, for example, [42, 57]).

Indoor Environments. Localization in an indoor environment is linked to a
map with high level of detail. Even for small spaces this presents a challenge
in terms of the volume of data that must be available for the task. In fact, it
is important to consider that sensor values might vary with altitude as well as
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with horizontal displacement. Furthermore, selecting a sensor that provides con-
sistent differences in enclosed environments increases the complexity of the task.
Potential solutions to these problems are manual collection of ambient readings
or strategic placement of location beacons (and sensors) throughout the area of
study under consideration [16, 23, 49, 52]. Chung et al. use the magnetic field to
determine the position of a user in a corridor. They manually collect magnetic
field readings every 60 cm and find that localization is accurate to 1.64 m for
90% of the test observations [16]. They also test their system in elevators and
in the atrium of a building and find that there are measurable differences across
these locations. Following the work by Chung et al., Haverinen and Kemppainen
test whether the difference in magnetic field readings can be used to locate an
agent across a larger area (in their work, they test four buildings). They find
that these readings have low variability over time while being spatially distinct
and build a localization system based on them [27]. Finally, Wang et al. show
that magnetic field readings can be used to discriminate between activities such
as standing or walking. In particular, they use changes in the magnetic field to
identify when a user is moving in an escalator [49].

Outdoor Environments. Outdoor localization approaches are classified based
on the technique used to establish the map. One common fingerprinting method
from outdoor environments is matching the visual cues obtained from the camera
of the phone to a map of geo-tagged images [48]. Narain et al. use the combi-
nation of the motion and position sensors available in smartphones (primarily
the accelerometer and gyroscope) to infer the trajectory of a moving car [38].
In particular, they propose a method to reconstruct the route taken by the car
based on the physical characteristics of the roads (i.e., speed, bumps, stop signs,
and curvature), the junctions between roads, and the angle of each turn was
recorded. With this information, they are able to match the estimated candidate
trajectory to the map of the (known) city using OpenStreetMap and estimate
the actual route taken by the user. Similarly to our work, the authors propose
a zero-permission attack to determine location information about users from
motion sensors. However, we focus on a different localization task that aims to
identify the places that users have visited solely from the magnetometer sensor
instead of the trajectories they have taken. Moreover, we employ an event-based
approach that identifies events and matches events to locations thereby reducing
the need for up-to-date maps. Finally, [7], the authors present a system where a
location ID is transmitted via low power magnetic coil and received by permis-
sionless apps. This system is different from ours, since MarcoPolo does not rely
on any external device for identification.

3.3 Contribution to the State of the Art

The main challenge faced by outdoor localization techniques comes from the
amount of data required for accurate comparison as well the ability to search this
data efficiently in order to find the user’s current location. On the other hand, the
main challenge of indoor localization techniques is the design of fingerprinting
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methods that are costly in both manpower and time because they require fine
spatio-temporal granularity [52]. Moreover, the surveyed signal used to construct
the map may change over long periods of time. Consequently, maps have to
be repeatedly updated. Similarly, the calibration process on the device that
is necessary to accurately measure the signal and the calculation of distances
between devices and (signal) sources requires complex computations that might
adversely impact the performance of smartphones [49].

To the best of our knowledge, our work is the first that explicitly maps
location-types in terms of their characteristics, such as the structural similarity
between buildings, the isolation of repeated events, the size and distribution of
people and crowds, and any similarity across the tasks undertaken at each lo-
cation. We combine these characteristics to generate a magnetic signature for
each location-type which we exploit to identify new locations in the city. The
signatures for each location-type are composed of a set of shapelets as defined
in [24] [28] [37] [55] [56]. The classification of a new observation into a location-
type is a function of the likelihood of a shapelet being present in that observa-
tion. To summarize, we propose a novel, low-cost, and passive methodology for
location inference. In particular, we present supervised classification algorithms
that take as input the time-series (observations) for all classes and predict the
probability and label (i.e., location-type) of a new observation.

4 Methodology

In this section we detail the different approaches that we use in our method-
ology to predict location-types from magnetic field readings. In particular, our
methodology addresses two problems: (1) classification from time-series; and (2)
deriving location-types from magnetic field readings.

4.1 Techniques for Feature Extraction

Measurements over time provide a more complete view of reality, they allow us
to uncover relationships between consecutive measurements. We propose that
collecting and processing longitudinal magnetic field readings will prove to be
useful in the task of localization. However, time-series classification, clustering,
and prediction are identified in the literature as hard problems. Challenges in
time-series analysis include: depending on the length of the time series, resource
consumption (i.e., computational complexity) of the method; definition of a sim-
ilarity metric in data that is noisy and prone to outlying values and shifts; and
finally, high-dimensionality of observations. An in-depth discussion of these chal-
lenges can be found in [56, 21, 1, 5]. In this work we compare four methods for
time-series analysis: (i) full signal matching; (ii) statistical descriptors; (iii) au-
tomated feature extraction through the use of neural networks; and (iv) classifi-
cation through the extraction of shapelets, in both time and frequency domains.
Details of these methods are discussed in the remainder of this section.
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Full Signal Matching. Pattern matching is a method for time-series classifi-
cation where each test sample is matched against all labelled training samples.
The test sample is then assigned to the label of the closest training sample
(i.e., with the shortest distance to it). Consequently, this approach requires a
pairwise distance calculation from every signal in the testing set to every signal
in the training set, which might become intractable as the number of signals
grows. In this analysis, we used four different distance measures for performing
classification task: Dynamic Time Warping (DTW), Euclidean Distance, Cosine
Distance, and Bhattacharyya Distance [29]. We selected these distance mea-
sures as they extract different information from the corresponding input signals:
DTW involves both signals and tries to find the best fit between them in a
cross-correlation computation, the Euclidean Distance measures the magnitude
of the separation between the sampled signals, the Cosine Distance measures
the angular separation between the two vectors being compared, and finally, the
Bhattacharyya Distance captures the divergence between the probability distri-
butions of each of the signals. One of the key limitations of this approach is that
it is sensitive to small variations between the two signals, including differences in
the mean for matching signals, which could negatively impact the classification
performance. In contrast, we aim at identifying similarities between observations
collected in noisy environments. Therefore, in the context of our application, we
are expecting this method to have poor prediction accuracy. Nevertheless, we
use it as the baseline metric for our performance evaluation.

Statistical Descriptors. The second approach we consider consists in the
extraction of representative statistical descriptors (i.e., features) from the time-
series. The extracted features are used to represent key characteristics of the
data. It is worth noting that the classification performance using these features
depends on the degree to which the sampled data represents the population of
interest. Good statistical models require a sufficient sample size. We selected
eight commonly used statistical features: the median, the amplitude, the energy
of the signal, the magnitude and frequency of the natural frequency, the spectral
centroid, and the magnitude and frequency of maximum power. Note that we
sub-sample the input data and compute these features in both the time and
frequency domain. It is worth noting that other alternative features might be
extracted. Also for ensuring the replicability of the experiments, we used the open
source versions of three state-of-the-art classification algorithms provided by the
scikit-learn library [41] to construct our prediction models: k-Nearest Neighbors
(kNN) [17], Random Forests (RF) [8], Extreme Gradient Boost (XGB) [13].
kNN is one of the most popular and effective unsupervised learning algorithms,
whereas RF and XGB are widely used for their interpretability and performance,
respectively.

Automated Feature Extraction. Algorithms based on neural networks re-
move the burden of manual extraction of features in order to train prediction
models [22]. In particular, in this study, we use Siamese Networks [30] — a
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specific type of neural network architecture that aims to learn to differentiate
between two inputs rather than classifying the inputs into given classes. This
network architecture is comprised of two identical neural networks each taking
one of the two inputs and the last layers of the two networks are then fed to a
contrastive loss function to compute the similarity between the inputs [25]. Two
neural networks are identical if they have the same configuration in terms of
parameters and weights. Since the weights across the two networks are shared,
there are fewer parameters to train, which in turn means that less amount of
training data is required. This also reduces the chance of overfitting. Since our
input is in the form of a time series, we use 1-D convolutional layers to extract
patterns from the data, which are passed from the feed-forward layers to ob-
tain the results for the output layer that is used for computing similarity. More
specifically, our network consists of C convolutional layers (CNN layers) and a
feed-forward layer that maps the features (extracted by the CNN layers) to the
output layer with 100 nodes (i.e., the number of final features to be extracted).
We considered values of C ∈ [2, 3, 4]. We do not consider higher values of C given
the size of the training set under consideration.

Shapelets (in Time Domain). Shapelets are small local patterns in a time-
series that are highly predictive of a class [37]. In the context of our work, each
shapelet corresponds to an event that is found in at least 90% of the obser-
vations belonging to a certain location-type (with 11 distinct locations and 5
devices we require an event to be present in 50 observations before a candidate
is considered a shapelet). Our assumption is that for each class there exists at
least one shapelet contained in all observations of that class, and we consider
shapelets of different sizes where longer shapelets are more valuable in terms
of class separation. One benefit of this technique is that the analysis of candi-
date shapelets is independent for each class. This means that the length of a
shapelet is also a feature we are considering in the input and that the maximum
length is determined on a per class basis (i.e., one way to distinguish between
classes that may have similar events is the duration of that event). As an exam-
ple, the movement of a long-distance train and a subway are similar events but
long-distance trains are longer which might correspond to longer shapelets. The
methodological contribution of this work incorporates shapelets into probabilis-
tic classification algorithms. Our method takes labeled time series observations
and returns the location-type of an unlabeled observation. The algorithm is di-
vided in three steps: first, it extracts shapelets from the training observations (to
build a shapelet dictionary); then, uses the training data to describe each class
in terms of the discovered shapelets; and finally, it classifies test observations
into the known classes.

Shapelets (in Frequency Domain). It is common practice in signal process-
ing to study signals in the frequency domain [9]. Following the same procedure
described in Section 4.1, we generate a bag of shapelets (with all the possible
sub-signals from the training set) and transform each one to the frequency spec-
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Fig. 2: Visual representation of a shapelet. In the figure, each sequence is the
longest common time-series present in at least 90% of the observations for each
location-type. The length of the shapelet can vary per class as it is possible to

observe in the plot. Some might be shorter than others.

tra before computing the correlation between all signals. Doing the piecewise
transformation before extracting the shapelets might result in better classifi-
cation if the sources of the signal are monotonic. We integrate the frequency
analysis method, known as the Generalized Correlation Coefficient (GCC) [43]
with the shapelet-based classifier and compare the accuracy of both methods.
We follow the same clustering procedure and apply hierarchical clustering to the
distance matrix generated using GCC. The shapelet dictionary is extracted from
the inspection of each cluster. During classification, we use GCC to compute the
correspondence between each of the elements in the shapelet dictionary and the
signal used as input. This process is repeated (separately) for the observations
in the test set and evaluated using the same algorithms.
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4.2 Criteria for Assessing Prediction Models

All Places, All Devices. This evaluation approach aims at answering the
question as to whether the models are capable to correctly classify a known lo-
cation from a known device. In the data, we take the 10-minute readings collected
from each device and divide it into ten 1-minute segments. We then proceed to a
70/30 cross evaluation by randomly selecting 3 segments for the testing set and
the remaining 7 for the training set, i.e., there is no overlapping between training
and test sets. We repeat this process and average over 30 iterations using the
analysis methods detailed in Section 4.1. Under this evaluation criterion, we as-
sume that we have (previous) data from the device being tested at the location
from which the new observation is tested.

Leave-a-Place-Out. This evaluation approach aims at examining the location-
type prediction performance from magnetic field readings belonging to locations
that have not been seen by the model but belonging to the existing set of location-
types. For instance, in this approach, we aim to classify a magnetic field reading
that belongs to a train station but in a station different to the ones present in the
training set. With this approach, we want to investigate whether the need to map
each location can be eliminated and, thus, the location-type can be determined
based on its characteristics. In order to carry out this type of evaluation, we
remove from each location-type a single distinct location at a time. We use the
removed location as the test set and all the readings from the remaining locations
in the training set. This process is repeated until each location is assigned once
to the testing set.

Leave-a-Device-Out. In this final evaluation approach, we are interested in
determining whether the models can predict the location-type from the reading
of a new device (i.e., an unknown user). To carry out this evaluation, we select
all readings from one device and use them in the testing set. The training set is
then composed of all readings of the remaining devices. We use cross validation
to evaluate the performance of the method.

5 Dataset

Our data collection was carried out in three stages: (i) application development,
(ii) data collection, and (iii) analysis and classification.

5.1 Data Collection

Our hypothesis in this project is that similar locations will be characterized by
similar magnetic fields. We are attempting to determine whether a fingerprint
exists for a particular location-type and use it to predict the class of unknown
locations. This task requires on-site data collection at a number of locations
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across the city. The measurement devices must therefore be mobile and, if possi-
ble, able to be crowdsourced. For their sensors and ubiquity, we use cell phones
to collect magnetic field readings at each location.

We developed two applications, for Android and iPhone, and used 14 devices
to collect measurements (6 Android phones running Android 7.1.2, 8 iPhones
running iOS 12). Both applications collect the three dimensional magnetic field
readings along with location, linear acceleration, user activity (for Android phones),
and phone identifiers. In the evaluation (i.e., testing) of each model we only con-
sidered the five devices for which we had data at all locations.

5.2 Description of the Dataset

The final dataset consists of 550 magnetic-field measurements: we collected read-
ings from 5 off-the-shelf smartphones at 110 different locations (10 location-types
and 11 locations per type allowing us to train on at least 10 locations for each
location-type). Each magnetic reading contains at least 10 minutes of data sam-
pled at 1 Hz. In our case, we are not interested in reconstructing the function
and sampling at this rate allows us to record changes without overtaxing the re-
sources of the phone. We designed a collection methodology such that the data
that was collected mimic realistic life situations. Volunteers were instructed to
hold one phone while walking around the location as they would normally do
for a period of 10 minutes. The samples were taken at different times of the day
over a period of three months by different volunteers in an attempt to capture
the inherent characteristics of a location rather than any bias introduced by the
volunteers.

The types of places were chosen to fit three groups: indoor environments
(i.e., halls, gyms, laundromats, and coffee shops); outdoor environments (i.e.,
parks and bridges); and transportation hubs (i.e., subway stations, long-distance
train stations, parking lots, bus stops). Locations, excluding the parks, are con-
tained in an area of 9.7 mi2. In any case, parks are contained within the greater
metropolitan area of the city taken into consideration in this study.

6 Results

In this section we present the evaluation of the four time-series classification
methods, which we discussed in Section 4.1, constructed to infer the location-
types using magnetic field readings. As discussed in Section 4.2, we evaluate each
method using three criteria: (i) all places, all devices, (ii) leave-a-place-out, and
(iii) leave-a-device-out.

6.1 All Places, All Devices Evaluation

This evaluation corresponds to a scenario where the classifier has been trained
with data originating from the device being tested at the location in question
(i.e., we have labeled data for all devices at every location). The separation
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Fig. 3: Confusion matrices for the methods evaluated for the leave-a-place-out
scenario for the best classifier/configuration.

between training and testing occurs over the temporal component of each obser-
vation. We converted each observation into ten 1 minute segments and selected
3 random segments for the testing set. The remaining 7 segments become the
training set. We repeated this process 30 times to reduce the impact of the ran-
dom selection in the results. This evaluation criterion resulted in 100% accuracy
for location-type identification from all devices.

In this scenario, the attack requires having labeled data from all devices at
each target location (i.e., building a map per device with all locations). In a
deployed system this would require having real-time labeled data to use as the
basis of the map. Because of the pervasiveness of mobile devices this could be
possible however, this would be the equivalent of the brute-force approach. In the
following sections we present two scenarios where we explore how to generalize
the method for new devices and places.
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6.2 Leave-a-Place-Out Evaluation

In this evaluation scenario, we used the data of a single location (from all devices)
as the test set and the data for the remaining 109 places as train set. We repeated
this until we use the data for each of the 110 places for testing, then aggregated
the results of all iterations to determine the overall performance.

In order to better understand the performance of all methods, we present
the confusion matrices for the four methods under consideration in Figures 3(a)-
(d). In each matrix, the average of the diagonal values corresponds to the overall
accuracy of the indicated classifier. In particular, we present the average accuracy
for each classifier constructed for the feature extraction methods and evaluated
using leave-a-place-out evaluation criterion. Overall, our results show that the
classifier constructed with shapelets outperforms all others.

The classifiers based on statistical descriptors and shapelets are optimized
using three algorithms (i.e., kNN, RF, and XGB). Our results show that both
RF and XGB achieve the highest accuracy (with a negligible difference between
them), whereas kNN has the worst performance. On the other hand, full signal
matching classification was optimized through four different distance metrics
(i.e., DTW, Euclidean, Cosine, and Bhattacharya distances). We observe that
DTW is the measure that performs best. Finally, we optimized automated fea-
ture classification for different number of convolution layers (i.e., 2, 3, and 4
layers with 4, 8, and 16 filters, respectively). The results for this optimization
show that the model with 3 and 4 convolution layers achieve the best accuracy.
We report these in Table 2.

We further investigated whether the two best methods (i.e., statistical de-
scriptors and shapelets) extract and exploit different information from the data.
To this end, we constructed a new method that combines both of these feature
sets as input. If both methods extract the same information, then the accuracy
of the combined model should not improve. We compared the results of the new
combined feature classifier against statistical descriptors and shapelets used as
baselines. The results in Figure 4 shows that there it is possible to observe a per-
formance improvement. We constructed the new combined feature set method
by using the kNN, RF, and XGB classifiers. We report these results in Table 1.

6.3 Leave-a-Device-Out Evaluation

The readings collected by mobile devices have some error due to the quality of
the sensors, their age, and usage [6]. Each device has the software necessary to
compensate for the error and provide measurements close to the actual value.
As such, this error-correction enabled us to crowd-source the data collection in
order to process and extract more robust descriptors for each location-type as we
would be able to observe the same places under different environmental settings.
We evaluated our methods using a leave-one-device-out scenario as discussed in
Section 4.2.

In Figures 5(a)-(d) we present the confusion matrices for the best performing
models for each four methods presented in Section 4.1. Similar to the leave-a-
place-out scenario, we optimized the methods based on statistical descriptors
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Table 1:
Leave-a-Place-Out

Classification
Combined Feature Set
Classifiers Accuracy
kNN 0.1860
RF 0.3907
XGB 0.3442
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Fig. 4: Confusion Matrix for the best
configuration: Leave-a-Place-Out.

Table 2: Performance of all classifiers for the leave-a-place-out evaluation.
(a)Full Signal Matching (b)Statistical Descriptors (c)Automated Features (d)Shapelet
Distance measure Accuracy Classifiers Accuracy CNN Layers Accuracy Classifiers Accuracy
DTW 0.1872 kNN 0.1170 2 0.0901 kNN 0.2690
Euclidean 0.1750 RF 0.2040 3 0.0907 RF 0.4045
Cosine 0.1713 XGB 0.2100 4 0.0902 XGB 0.3920
Bhattacharyya 0.1005

and shapelets using the same three classifiers (i.e., kNN, RF, and XGB). Our
results remained consistent: both RF and XGB achieve the highest accuracy
(with a negligible difference between them). These results are presented in Table
3. Full signal matching classification was optimized through four different dis-
tance metrics (i.e., DTW, Euclidean, Cosine, and Bhattacharya distances); we
found that the method that works best uses Euclidean distance as its metric.
Finally, we optimized the automated features classifier for different number of
convolution layers (i.e., 2, 3, and 4 layers with 4, 8, and 16 filters respectively).
The results are again consistent with the previous analysis: the model with 3
and 4 convolution layers achieve the best accuracy. These results are reported
in Table 4.

We investigated whether the two best methods (i.e., statistical descriptors
and shapelets) extract and exploit different information from the magnetic field
readings. We constructed a new classifier that combines both feature sets as in-
put and compares the results against statistical descriptors and shapelets based
methods (used as baselines). The evaluation results show that the classifier based
on the combined features achieves an accuracy improvement of 7% as compared
to the best of the previous methods. The increase in performance by the com-
bined method can be attributed to the fact that the statistical descriptors exclude
the outlying values from a dataset, whereas they are included by the shapelets in
the temporal patterns [21]. This shows the consistency of the two methods (i.e.,
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(d) Shapelets

Fig. 5: Confusion matrices for the methods evaluated for the leave-a-device-out
scenario for the best classifier/configuration.

shapelets and statistical descriptors) for extracting complementary information
from the time-series data. We present these results in Figure 6.

7 Threats to Validity

The proposed method depends on the possibility of accessing the magnetome-
ter through zero-permission or through involuntary access to it through an app.
We also assume that the magnetometer’s refresh rate is high enough to allow
shapelet extraction. This might change in the future and/or might be different
in the future. It is worth noting that, for example, rate limitation for a variety
of position sensors has been introduced in Android 12 [3]. In addition, different
places might be characterized by similar geo-magnetic profiles. Our tests have
been limited in terms of variety of places and we cannot exclude that this might
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Table 3:
Leave-a-Device-Out

Classification
Combined Feature Set
Classifiers Accuracy
kNN 0.1776
RF 0.4256
XGB 0.4200
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Fig. 6: Classification for the combined feature
set for the two most accurate techniques:

shapelets and statistical descriptors

Table 4: Performance of all classifiers for the leave-a-device-out evaluation.
(a)Full Signal Matching (b)Statistical Descriptors (c)Automated Features (d)Shapelets
Distance measure Accuracy Classifiers Accuracy CNN Layers Accuracy Classifiers Accuracy
DTW 0.1852 kNN 0.1776 2 0.1025 kNN 0.2495
Euclidean 0.2407 RF 0.2998 3 0.1291 RF 0.3552
Cosine 0.1481 XGB 0.2926 4 0.1274 XGB 0.3593
Bhattacharyya 0.1204

happen in certain circumstances. More in general, it might happen that the envi-
ronment is highly noisy. This might also affect the applicability of the proposed
method in general.

Finally, in terms of resources, an application characterized by a dispropor-
tionate use of memory (used to store readings) and battery (for network trans-
mission continuous observations) might look suspicious. In contrast, a system
where shapelets are computed offline and transferred to the phone for classifica-
tion will be practically unnoticeable to the user. Indeed, after training, classifica-
tion in itself is a resource-efficient task. In our implementation, once computed,
all shapelets (i.e., the features) required approximately 50 kB of storage.

8 Summary of the Contributions

We show that magnetic field measurements can be leveraged to identify types
of places with approximately 40% accuracy. We infer location-types both from
unseen places and unseen devices. To the best of our knowledge, we are the first
to present such an approach. Most of the literature in localization bases location
on maps: either by matching the exact values at one location or calculating the
distance from some known position. We instead focus on the physical features of
the environment: their magnetic signatures. In order to perform the experimental
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evaluation of the proposed attack, we performed an in-the-wild measurement
study. We collected over 91 hours of data from 10 location-types across a major
metropolitan area and present our results from a set of 110 distinct locations.
The collection times at each location varied in terms of time of day, day of the
week, and, for some locations, the readings between phones differ by up to a
month. We expect that by allowing such variation, we mitigated the impact of
external influences on the generalizability of our results.

Overall, this paper shows that environmental characteristics can be lever-
aged to infer the location-type achieving coarse-grained localization. We have
presented two scenarios, one where the test location has never been visited and
another where the phone that is collecting the measurements has never been
seen. We believe that this constitutes a substantial contribution as the ability
to determine coarse-grained location information without the need to map all
the locations of interest. Moreover, we find that, as a passive, zero-permission
attack it can be used to track users, inferring their routines.
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