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Do large language models (LLMs) display rational reasoning?
LLMs have been shown to contain human biases due to the
data they have been trained on; whether this is reflected in
rational reasoning remains less clear. In this paper, we answer
this question by evaluating seven language models using tasks
from the cognitive psychology literature. We find that, like
humans, LLMs display irrationality in these tasks. However,
the way this irrationality is displayed does not reflect that
shown by humans. When incorrect answers are given by
LLMs to these tasks, they are often incorrect in ways that differ
from human-like biases. On top of this, the LLMs reveal an
additional layer of irrationality in the significant inconsistency
of the responses. Aside from the experimental results, this
paper seeks to make a methodological contribution by
showing how we can assess and compare different capabilities
of these types of models, in this case with respect to rational
reasoning.
1. Introduction
Large language models (LLMs) have quickly become integrated
into everyday activities, and their increasing capabilities mean
this will only become more pervasive. Given this notion, it is
important for us to develop methodologies to evaluate the
behaviour of LLMs. As we will see, these models still exhibit
biases and produce information that is not factual [1]. However,
there is extensive variation in the responses given by different
models to the same prompts. In this paper, we take a
comparative approach based in cognitive psychology to evaluate
the rationality and cognitive biases present in a series of LLMs;
the aim of this paper is to provide a method to evaluate and
compare the behaviour and capabilities of different models, here
with a focus on rational and irrational reasoning. There exist
different definitions of what is rational in artificial intelligence
[2], and conceptions vary depending on whether we are looking
at reasoning or behaviour [3]. For this study, we are concerned
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with rational reasoning: we understand an agent (human or artificial) to be rational if it reasons
according to the rules of logic and probability; conversely, we take an irrational agent to be one that
does not reason according to these rules. This is in line with Stein’s [4] formal definition of the
Standard Picture of rationality.

In this paper, we evaluate seven LLMs using cognitive tests proposed by Kahneman & Tversky [5–7]
and others [8–10], as well as some facilitated versions formulated by Bruckmaier et al. [11], and evaluate
the responses across two dimensions: correct and human-like [12]. These tasks were initially designed to
illustrate cognitive biases and heuristics in human reasoning, showing that humans often do not reason
rationally [13]; in this case, we use them to evaluate the rationality of LLMs. The ‘holy grail’ would be to
develop a set of benchmarks that can be used to test the rationality of a model; this is a complex problem
which requires a consensus on what is deemed rational and irrational.

In using methods designed to evaluate human reasoning, it is important to acknowledge the
performance versus competence debate [14]. This line of argument encourages species-fair comparisons
between humans and machines, meaning that we should design tests specific to either humans or
machines, as otherwise apparent failures may not reflect underlying capabilities but only superficial
differences. Lampinen [15] discusses this problem when it comes to language models in particular,
highlighting that different approaches must be taken to evaluate cognitive and foundation models.
However, if we take the purpose of LLMs to be to produce human-like language, perhaps the best
approach is precisely to evaluate their output with tasks designed to evaluate humans. This is the
approach we have taken in this paper—in order to identify whether LLMs reason rationally, or
whether they exhibit biases that can be assimilated to those present in human decision-making, the
most appropriate approach is therefore to use tasks that were initially designed for humans.

Building on this debate and looking at LLMs being evaluated using human tests, Hagendorff [16] has
proposed the creation of a new field of research called machine psychology, which would treat LLMs as
participants in psychological experiments. The approach employed in this paper precisely applies tests
from psychology that were originally designed for humans, in this case to evaluate rational and
irrational reasoning displayed by such models. Further to this, some have even discussed the potential
of using LLMs as participants in cognitive experiments instead of humans [17], although some see this
proposal as too optimistic [18], and others warn against excessive anthropomorphism [19]. One
argument against the use of such models in cognitive experiments is that LLMs may be effective at
approximating average human judgements, but are not good at capturing the variation in human
behaviour [20]. One potential avenue to address this issue is current work on language models
impersonating different roles [21], in this way capturing some of the variation in human behaviour.
Binz & Schulz [22] show that after finetuning LLMs on data from psychological experiments, they can
become accurate cognitive models, which they claim begins paving the way for the potential of using
these models to study human behaviour. Park et al. [23] combine LLMs with computational interactive
agents to simulate human behaviour, both individual and within social settings.

Given the data that they are trained on, LLMs naturally contain human-like biases [24–26].
Schramowski et al. [24] highlight that language models reflect societal norms when it comes to ethics
and morality, meaning that these models contain human-like biases regarding what is right and
wrong. Similarly, Durt et al. [26] discuss the clichés and biases exhibited by LLMs, emphasizing that
the presence of these biases is not due to the models’ mental capacities but due to the data they are
trained on. Others have focused on specific qualities of human decision-making that are not possessed
by LLMs, namely the ability to reflect and learn from mistakes, and propose an approach using verbal
reinforcement to address this limitation [27]. As these studies show, LLMs display human-like biases
which do not arise from the models’ ability to reason, but from the data they are trained on.
Therefore, the question is whether LLMs also display biases that relate to reasoning: do LLMs
simulate human cognitive biases? There are cases where it may be beneficial for AI systems to
replicate human cognitive biases, in particular for applications that require human-AI collaboration [28].

To answer this question, we use tasks from the cognitive psychology literature designed to test
human cognitive biases, and apply these to a series of LLMs to evaluate whether they display rational
or irrational reasoning. The capabilities of these models are quickly advancing, therefore the aim of
this paper is to provide a methodological contribution showing how we can assess and compare
LLMs. A number of studies have taken a similar approach, however they do not generally compare
across different model types [12,16,29–35], or those that do are not evaluating rational reasoning [36].
Some find that LLMs outperform humans on reasoning tasks [16,37], others find that these models
replicate human biases [30,38], and finally some studies have shown that LLMs perform much worse
than humans on certain tasks [36]. Binz & Schulz [12] take a similar approach to that presented in this
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paper, where they treat GPT-3 as a participant in a psychological experiment to assess its decision-
making, information search, deliberation and causal reasoning abilities. They assess the responses
across two dimensions, looking at whether GPT-3’s output is correct and/or human-like; we follow
this approach in this paper as it allows us to distinguish between answers that are incorrect due to a
human-like bias or are incorrect in a different way. While they find that GPT-3 performs as well or
even better than human subjects, they also find that small changes to the wording of tasks can
dramatically decrease the performance, likely due to GPT-3 having encountered these tasks in
training. Hagendorff et al. [16] similarly use the cognitive reflection test (CRT) and semantic illusions
on a series of OpenAI’s generative pre-trained transformer (GPT) models. They classify the responses
as correct, intuitive (but incorrect), and atypical—as models increase in size, the majority of responses
go from being atypical, to intuitive, to overwhelmingly correct for GPT-4, which no longer displays
human cognitive errors. Other studies that find the reasoning of LLMs to outperform that of humans
includes Chen et al.’s [33] assessment of the economic rationality of GPT, and Webb et al.’s [34]
comparison of GPT-3 and human performance on analogical tasks.

As mentioned, some studies have found that LLMs replicate cognitive biases present in human
reasoning, and so in some instances display irrational thinking in the same way that humans do.
Itzhak et al. [38] investigate the effects of fine-tuning; they show that instruction tuning and
reinforcement learning from human feedback, while improving the performance of LLMs, can also
cause these models to express cognitive biases that were not present or less expressed before these
fine-tuning methods were applied. While said study [38] focuses on three cognitive biases that lead to
irrational reasoning, namely the decoy effect, certainty effect and belief bias, Dasgupta et al. [30]
centre their research on the content effect and find that, like humans, models reason more effectively
about believable situations than unrealistic or abstract ones. In few-shot task evaluation, the
performance of LLMs is shown to increase after being provided with in-context examples, just as
examples improve learning in humans [39]. Others have found LLMs to perform worse than human
subjects on certain cognitive tasks, Ruis et al. [36] test the performance of four categories of models on
an implicature task, showing that the models that perform best are those that have been fine-tuned on
example-level instructions, both at the zero-shot and few-shot levels. However, they still find that
models perform close to random, particularly in zero-shot evaluation. Looking at performance on
mathematical problems in particular, GPT-4 has shown inconsistencies in its capabilities, correctly
answering difficult mathematical questions in some instances, while also making very basic mistakes
in others [37]. As we will see below, we find this to be the case in our analysis across the language
models evaluated. The inconsistency in performance is not only present in tasks involving
mathematical calculations, but is apparent across the battery of tasks.

This paper forms part of the existing area of research on the evaluation of LLMs. It differs from
existing work by focusing on rational and irrational reasoning, and comparing the performance of
different models. As we have seen, past studies have applied cognitive psychology to study LLMs.
While they often focus on seeing whether LLMs replicate different aspects of human behaviour and
reasoning, such as cognitive biases, we are interested in whether the way LLMs display rational or
irrational reasoning. Much of the existing work focuses on a single model, or different versions of the
same model. In this case, we compare across model types and propose a way to evaluate the
performance of LLMs, which may ultimately lead to the development of a set of benchmarks to test
the rationality of a model.
2. Methods
2.1. Language models
We evaluate the rational reasoning of seven LLMs using a series of tasks from the cognitive psychology
literature. The models that we assess are OpenAI’s GPT-3.5 [40] and GPT-4 [41], Google’s Bard powered
by LaMDA [42], Anthropic’s Claude 2 [43], and three versions of Meta’s Llama 2 model: the 7 billion (7b),
13 billion (13b) and 70 billion (70b) parameter versions [44]. We use the OpenAI API to prompt GPT-3.5
and GPT-4, and all other models are accessed through their online chatbot interfaces. The code for the
former is available on GitHub, and information on how models were accessed is detailed in electronic
supplementary material, appendix 1.

We did not change any parameter settings in order to evaluate the models on these cognitive tasks.
However, for Llama 2, the 7b and 13b parameter models had the following default prompt (figure 1).



Figure 1. Default system prompt for Llama 2 7b and 13b.

Table 1. List of tasks and the cognitive biases they were designed to exemplify.

task cognitive bias reference

Wason task confirmation bias [8,11]

AIDS task inverse/conditional probability fallacy [9,11]

hospital problem insensitivity to sample size [5,6,11]

Monty Hall problem gambler’s fallacy, endowment effect [10,11]

Linda problem conjunction fallacy [7,11]

birth sequence problem representativeness effect [5]

high school problem representativeness effect [5]

marbles task misconception of chance [5]
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After running an initial set of the tasks on these Llama 2 models, we removed the default prompt as it
generally meant that the models refused to provide a response due to ethical concerns. Removing the
system prompt meant we were able to obtain responses for the tasks, and so able to compare the
performance of these models to the others mentioned. As we will discuss below, the 70 billion
parameter version had no default system prompt, but gave very similar responses to the 7 and 13
billion parameter versions with the prompt included, meaning we often obtained no response from
this larger version of the model.
2.2. Description of tasks
The tasks used to evaluate these models are taken primarily from Kahneman and Tversky’s work
[5–7,13], who designed a series of tasks to highlight biases and heuristics in human reasoning.
Additional tasks [8–10] and facilitated versions [11] are also included. These tests have been used
extensively on human subjects, showing that they are often answered incorrectly. Based primarily on
work by Gigerenzer [45,46], a series of facilitated versions of these tasks were developed, emphasizing
the impact of context and presentation of the problem. Following on from this, Bruckmaier et al. [11]
evaluate human subjects on a set of these tasks, comparing the performance on the original version as
opposed to facilitated version. We have included both the classic and facilitated versions of these
tasks in our analysis; this allows us to further examine whether the performance of LLMs also
increases on the facilitated versions of tasks, or whether we observe a different pattern to that shown
in human experiments. Whereas when evaluating human subjects each task would only be asked
once, when evaluating LLMs on the same tasks, we prompt the models with each task 10 times due
to the variation in responses.

In total, we study the performance of seven language models on 12 cognitive tasks, listed in table 1
(full task details are included in electronic supplementary material, appendix 2). Nine of them are from
the set of tasks originally designed by Kahneman and Tversky [5–7], Wason [8], Eddy [9] and Friedman
[10], and three which are facilitated versions of these tasks [11]. For the birth sequence problem [5], two
versions are included: one with an ordered sequence and one with a random sequence. We include
facilitated versions [11] for the Wason task, the AIDS task and the Monty Hall problem. We use zero-



Table 2. Categorization of responses.

correct incorrect

human-like correct (logical) reasoning studied bias

non-human-like incorrect (illogical) reasoning other response (including correct reasoning

but incorrect response)
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shot evaluation, as we are interested in the performance of these models without further learning, and for
each task we prompt the model 10 times in order to check for consistency of responses.

2.3. Categorization of responses
Each response to the task is categorized across two dimensions: correct and human-like [12], as detailed in
table 2. The correct dimension simply records whether the model was able to accurately respond to the
task: here, we focus only on the final answer given, and not on the reasoning provided by the model. The
answer that is deemed to be correct is taken from the cognitive psychology literature where the tasks
were first formulated, as the authors discuss both the answer typically given by humans, as well as
the correct answer that omits cognitive biases. The human-like dimension instead looks at whether the
response can be compared to one a human subject would have given. Again, the answers are
compared to those detailed in the cognitive psychology literature, which has studied extensively the
way humans typically respond to these tasks, and why these are often incorrect. Humans
predominantly respond to these tasks in one of two ways: they either answer correctly, or they give
the answer that displays the cognitive bias. For instance, for the Monty Hall problem, biased
reasoning would lead the participant to believe that it does not matter whether they stick to their
original choice or switch, as the probability remains the same. Therefore, a human-like response can be
both correct (provided that it is logically reasoned) and incorrect if it corresponds to the answers
typically given by human participants to these tasks, so is one where the answer given is in
accordance with one of the biases studied in the cognitive psychology literature. Instead, a response
that is correct and non-human-like would be one where the final answer is correct, but the reasoning
stated contains factual inaccuracies, incorrect calculations, or violates rules of logic and probability. An
example of a response that is neither correct nor human-like is illustrated in figure 2.
3. Results
The cognitive tasks used in this paper were designed to show that human reasoning is not always
rational, and that humans often employ heuristics or display cognitive biases [5,6]. Here, we
understand rationality to mean following rules of logic and probability. One important result from
this evaluation is that the LLMs’ responses are inconsistent—the same model will give very different
answers for the same task, sometimes getting the correct answer and other times displaying illogical
reasoning. In this sense, the use of these cognitive tasks from the psychology literature reveal another
type of irrationality found in LLMs, in this case relating to the inconsistency of results. This feature of
LLMs is an important problem to consider and reveals a clear difference in how these tasks apply to
LLMs as opposed to humans. Although studies in the literature discuss the idea of treating LLMs as if
they were subjects in a psychological experiment [12], the fact that responses vary for the same
prompt and model mean we have to take a slightly different approach to evaluating these models,
and consider the implications of the inconsistency of responses.

Results across all tasks are aggregated in table 3 and figure 3, and results per individual task are
detailed in table 4. The model that displayed the best overall performance was OpenAI’s GPT-4,
which achieved the highest proportion of answers that were correct and where the results was
achieved through correct reasoning (categorized as correct and human-like in the above categorization).
GPT-4 gave the correct response and correct reasoning in 69.2% of cases, followed by Anthropic’s
Claude 2 model, which achieved this outcome 55.0% of the time. Conversely, the model with the
highest proportion of incorrect responses (both human-like and non-human-like) was Meta’s Llama 2
model with 7 billion parameters, which gave incorrect responses in 77.5% of cases. It is interesting to
note that across all language models, incorrect responses were generally not human-like, meaning



Figure 2. Example response to the Monty Hall problem by Llama 2 7b (emphasis added).

Table 3. Aggregated results. R, reasoned; IR, incorrect reasoning; H, human-like; NH, non-human-like; CR, correct reasoning. Both
incorrect (NH) and incorrect (CR) belong to the incorrect and non-human-like categorization.

correct (R) correct (IR) incorrect (H) incorrect (NH) incorrect (CR) no answer

GPT-3.5 0.292 0.042 0.217 0.408 0.033 0.008

GPT-4 0.692 0.117 0.042 0.142 0.008 0.000

Bard 0.358 0.233 0.083 0.192 0.133 0.000

Claude 2 0.550 0.100 0.125 0.108 0.108 0.008

Llama 2 7b 0.025 0.192 0.167 0.608 0.000 0.008

Llama 2 13b 0.050 0.192 0.033 0.700 0.000 0.025

Llama 2 70b 0.150 0.050 0.000 0.333 0.050 0.417
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Figure 3. Aggregated results across all tasks for each model. The LLMs were prompted with 12 tasks from cognitive psychology, and their
responses were categorized over two dimensions: correct and human-like (in this graph, responses categorized as incorrect and non-human-like
are distinguished from those that were incorrect but displayed correct reasoning). For each task, the LLMs were prompted 10 times.
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they were not incorrect due to displaying a cognitive bias. Instead, these responses generally displayed
illogical reasoning, and even on occasion provided correct reasoning but then gave an incorrect final
answer. An example of the latter is illustrated in figure 4: this example shows Bard’s response to the
facilitated version of the Wason task, where the correct response is that both Letter 3 and Letter 4



Table 4. Results per task across all models: proportion of responses that were correct and human-like (C, correct; HL, human-
like). In the task names, (C) denotes the classic version, whereas (F) is the facilitated version.

GPT-3.5 GPT-4 Bard Claude 2

C HL C HL C HL C HL

Wason task (C) 0.0 0.6 0.9 1.0 0.0 1.0 0.6 0.9

Wason task (F) 0.0 0.8 0.6 1.0 0.0 0.0 0.4 0.4

AIDS task (C) 0.1 0.1 0.5 0.5 1.0 0.2 0.3 0.3

AIDS task (F) 0.6 0.6 0.7 0.7 0.9 0.4 1.0 1.0

hospital problem 0.2 0.4 1.0 1.0 0.9 0.6 0.9 0.8

Monty Hall problem (C) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9

Monty Hall problem (F) 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0

Linda problem 0.1 0.7 0.6 0.6 1.0 1.0 0.2 0.9

births sequence (random) 0.0 0.0 0.8 0.6 0.0 0.0 0.4 0.4

births sequence (ordered) 0.4 0.4 1.0 1.0 0.2 0.2 0.5 0.5

high school problem 0.3 0.3 1.0 0.0 0.1 0.0 1.0 0.0

marbles task 0.3 0.2 0.6 0.4 1.0 0.0 0.5 1.0

Llama 2 7b Llama 2 13b Llama 2 70b

C HL C HL C HL

Wason task (C) 0.2 0.0 0.2 0.0 0.1 0.1

Wason task (F) 0.0 0.6 0.0 0.0 0.4 0.4

AIDS task (C) 0.0 0.0 0.0 0.0 0.0 0.0

AIDS task (F) 0.0 0.0 0.0 0.0 0.0 0.0

hospital problem 0.1 0.5 0.1 0.0 0.2 0.1

Monty Hall problem (C) 0.8 0.2 1.0 0.4 1.0 0.8

Monty Hall problem (F) 0.7 0.0 0.6 0.0 0.7 0.4

Linda problem 0.2 0.8 0.3 0.6 0.0 0.0

births sequence (random) 0.1 0.0 0.1 0.0 0.0 0.0

births sequence (ordered) 0.1 0.0 0.1 0.0 0.0 0.0

high school problem 0.2 0.2 0.0 0.0 0.0 0.0

marbles task 0.2 0.0 0.5 0.0 0.0 0.0
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should be turned over. The model correctly reaches this conclusion in the explanation, but both at the
start and end of the response only states that Letter 4 needs to be turned over. This type of response,
where the reasoning is correct but the final answer is not, was observed across all model families to
varying degrees.

The result that most incorrect responses were not incorrect due to having fallen for a cognitive bias
highlights that these models do not fail at these tasks in the same way that humans do. As we have seen,
many studies have shown that LLMs simulate human biases and societal norms [24–26]. However,
when it comes to reasoning, the effect is less clear. The model that displayed the highest proportion
of human-like biases in its responses was GPT-3.5, where this only occurred in 21.7% of cases. If we
include human-like correct responses for GPT-3.5, this brings the proportion to 50.8% of cases. Again,
the model that displayed the most human-like responses (both correct and incorrect) was GPT-4 (73.3%);
the lowest was Llama 2 with 13 billion parameters, only giving human-like responses in 8.3% of
cases. The comparison between correct and human-like responses given by each model is summarized in
figures 5 and 6.

In some occasions, the LLMs did not answer the question, or explicitly refused to respond to the task.
This was particularly prominent for Llama 2 with 70 billion parameters, which refused to give an answer



Figure 4. Example response to the Wason task (facilitated) by Bard (emphasis added).
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in 41.7% of cases—an example is given in figure 7. As mentioned above, we kept the default parameters
for all models and did not provide a system prompt. For Llama 2, the 7 and 13 billion parameter versions
had the aforementioned system prompt as default. For the 70 billion parameter version, this system
prompt was no longer included. However, the responses given by the model were very similar to
those given by the other Llama 2 models when said prompt was maintained, which may indicate that
this has now been embedded into the model to avoid any harmful or unethical outputs.

As part of the tasks, we included three facilitated versions of classic cognitive tests [11], as well as two
versions of the births order problem: one of these gives a random order, and the other appears less random.
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Figure 6. Proportion of correct versus human-like responses across all tasks for each language model. Correct responses include
those with correct (logical) reasoning, as well as those with incorrect (illogical) reasoning that reached the correct answer.
Human-like responses include those that are correct with logical reasoning, and those that are incorrect but are achieved
through a studied human cognitive bias.

Figure 7. Example response to the Linda problem by Llama 2 70b.
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Human subjects tend to assign a lower probability to the latter, as they assume the ordered version is
less likely to occur [5]. A comparison of the models’ results for the classic and facilitated tasks is shown
in figure 8. Given that the facilitated versions of these tasks are more often answered correctly by
humans [11], we hypothesized that the same result would be observed for LLMs. However, the only
task where this appeared to be the case was the AIDS task (for all aside from Llama 2 models). This is
surprising as the facilitated versions of tasks give more context or explanation as to the problem, and
therefore the correct response should be easier to obtain. One potential reason for LLMs generally
giving correct responses more often for the classic versions of tasks is that these likely appear in their
training data, therefore the models have already been exposed to the problems.

The question of whether these models have already seen the cognitive tasks in training can be
partially answered by looking at cases where the LLM identifies the problem they are being posed
(table 5). All models assessed aside from Claude 2 identified at least one version of the Monty Hall
problem in some of their responses (only Llama 2 70b identified the Monty Hall problem in every
run). Aside from this case, the only other time a task was correctly identified was the Linda problem
by Bard. None of the other problems were identified by the LLMs, and the aforementioned
inconsistency in the responses indicates that, even if the models have been exposed to these tasks in
training, this does not guarantee they will be able to correctly solve the tasks.
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Figure 8. Result comparison for tasks that had two versions. For the Wason task, AIDS task and Monty Hall problem, the second set
of results corresponds to the facilitated version. For the birth order problem, the second set of results corresponds to the version with
a random order. For all four tasks, the second set of results (shown on the right) correspond to the task that human participants
more often get right. Aside from the AIDS task, none of the tasks mimic this pattern.

Table 5. Proportion of task runs that each task was identified by the given model. No other tasks were identified by any of the
LLMs.

Monty Hall problem (classic) Monty Hall problem (facilitated) Linda problem

GPT-3.5 0.4 0.1 0.0

GPT-4 0.9 0.0 0.0

Bard 0.7 0.3 1.0

Claude 2 0.0 0.0 0.0

Llama 2 7b 0.7 0.2 0.0

Llama 2 13b 0.9 0.4 0.0

Llama 2 70b 1.0 1.0 0.0
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Previous literature has identified that LLMs often make basic mistakes in seemingly simple
calculations [37]. Given this finding, we decided to compare the performance of the models on tasks
that contained mathematical calculations and those that did not—these results are illustrated in
figure 9. In this case, we only look at answers that were categorized as correct and human-like, that is
to say that the final answer was correct, and the reasoning presented was also logical. Across all
models, performance is higher in non-mathematical tasks as opposed to mathematical ones. The
magnitude of the difference in performance varies in the different models, being most stark for
Google’s Bard and Meta’s Llama 2 70b models: these models perform 38% and 33% better,
respectively, on non-mathematical tasks. Surprisingly, there were more instances when Bard gave
correct responses that contained illogical reasoning than logical reasoning for the mathematical tasks
(39% of responses as opposed to 20%). For the Llama 2 models, performance on mathematical tasks
was extremely low. The 7 and 13 billion parameter models did not give correct responses to any of
the tasks containing calculations, whereas the 70 billion parameter version only did so in one instance.
4. Discussion
This paper set out to evaluate LLMs using tasks from the cognitive psychology literature in order to
assess whether these models display rational reasoning, or whether they display irrational reasoning
akin to that observed in humans. Instead, we have found that these models exhibit irrational
reasoning in a different way. Firstly, the responses given by these models are highly inconsistent—the
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Figure 9. Proportion of responses that are both correct and human-like (this includes only correct responses with logical reasoning)
in mathematical versus non-mathematical tasks.
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samemodel will give both correct and incorrect, and both human and non-human-like responses in different
runs. Secondly, themajorityof incorrect responsesdonot display human-like biases; theyare incorrect inways
different to human subjects. A series of issues can be identified when looking at the explanations given by
LLMs, particularly when it comes to mathematical calculations, but also inconsistent logic. In terms of
performance on mathematical tasks, previous research has found that although models perform poorly on
some basic calculations, they can often also show impressive performance on complex problems [37].
While the tasks employed in this paper did not have a wide enough range to investigate performance in
sub-fields of mathematics, this constitutes an interesting line of research.

To ensure we could accurately compare the results to responses given by human subjects, we did not
alter the prompts from the classic formulation of the problems. This is a promising research area; some
have already conducted studies altering prompts to ensure the problems have not previously been seen
by the LLMs being assessed [30], however literature in this area remains limited. Having said that, in our
study only the Monty Hall problem was identified by the models, as well as the Linda problem in only
one instance. Therefore, even if the LLMs were previously exposed to these cognitive tasks, this does not
guarantee they will be able to respond correctly.

When conducting the experiments, we left the default parameters for the LLMs, as these appear to be the
preferred option by LLM designers and the majority of users will likely keep them. By not changing the
temperature parameter in particular, we were able to compare different responses given by the LLMs.
Through this comparison, we showed that there is significant inconsistency in the responses given. Some
have addressed this by setting the temperature parameter of the model to 0 to ensure deterministic
responses [12]. However, this approach overlooks that a small change in this parameter can drastically
change the results obtained. Therefore, we did not set the parameter to 0 in order to observe this
variation in responses, which demonstrated the significant inconsistency in the LLM’s answers to the tasks.

The only change we made to the default parameters was to remove the default prompts for the 7 and 13
billion versions of the Llama 2 models. Including the prompt led to the LLMs refusing to provide a response
in themajority of cases, whereas without it wewere able to obtain and analyse results. The 70b version of the
model appears to have this prompt embedded, which led to many of the tasks not being answered. Röttger
et al. [47] claim that in some cases we may have gone too far in trying to prevent models from responding to
unsafe prompts and refer to exaggerated safety, showing that LLMs refuse to comply with safe requests when
they include language that is sensitive or may be included in unsafe prompts.

Llama 2 70b’s refusal to respond to a large proportion of the tasks partly accounts for the poor
performance of this model. However, there is also a significant disparity in performance between
mathematical and non-mathematical tasks. As we have seen, Llama 2 70b is the model with the
second largest disparity in performance between tasks that contain calculations and those that do not
(second only to Bard). An example of an incorrect response to a mathematical task is included in



Figure 10. Example response to the Marbles task by Llama 2 70b.

Figure 11. Example response to the Wason task by Llama 2 70b.
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figure 10. Other errors displayed by Llama 2 70b seem to relate to comprehension, most notable for the
Wason task; an example response is illustrated in figure 11.
5. Conclusion
Despite thewidespread adoption of LLMs, researchers are still developing methods to assess and evaluate
their capabilities. In this paper, we treat thesemodels as if they are participants in cognitive experiments, an
approach that has been taken in a growing bodyof the literature. In so doing, we analyse the reasoning they
display.Wehave shown that the sevenmodels assessed in this paper showadifferent type of irrationality to
that displayedby humans; this irrationality is observed across twodimensions. First, the responses given by
the LLMs often display incorrect reasoning that differs from cognitive biases observed in humans. Thismay
mean errors in calculations, or violations to rules of logic and probability, or simple factual inaccuracies.
Second, the inconsistency of responses reveals another form of irrationality—there is significant
variation in the responses given by a single model for the same task. This has implications for potential
uses of these models in critical applications and scenarios, such as diplomacy [48,49] or medicine [50].
Therefore, the work presented here can serve as a starting point for dealing with safety aspects of LLMs
with respect to rational reasoning. This paper provides a methodological contribution to show how the
rational reasoning abilities of these types of models can be assessed and compared. The proposed
methodology has potential wider applications in studying cognitive abilities of LLMs. These tasks were
originally designed for human reasoning, and given that LLMs attempt to simulate human-like
language, using these tasks allows us to evaluate whether this is the case.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/oliviams/
LLM_Rationality and have been archived within the Zenodo repository: https://doi.org/10.5281/zenodo.10966401 [51].

Supplementary material is available online [52].
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