
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 1

A Cost-aware Adaptive Bike Repositioning Agent
using Deep Reinforcement Learning

Alessandro Staffolani, Victor-Alexandru Darvariu,
Paolo Bellavista and Mirco Musolesi

Abstract—Bike Sharing Systems (BSS) represent a sustainable
and efficient urban transportation solution. A major challenge in
BSS is repositioning bikes to avoid shortage events when users
encounter empty or full bike lockers. Existing algorithms unre-
alistically rely on precise demand forecasts and tend to overlook
substantial operational costs associated with reallocations.

This paper introduces a novel Cost-aware Adaptive Bike
Repositioning Agent (CABRA), which harnesses advanced deep
reinforcement learning techniques in dock-based BSS. By an-
alyzing demand patterns, CABRA learns adaptive repositioning
strategies aimed at reducing shortages and enhancing truck route
planning efficiency, significantly lowering operational costs.

We perform an extensive experimental evaluation of CABRA
utilizing real-world data from Dublin, London, Paris, and New
York. The reported results show that CABRA achieves opera-
tional efficiency that outperforms or matches very challenging
baselines, obtaining a significant cost reduction. Its performance
on the largest city comprising 1765 docking stations highlights
the efficiency and scalability of the proposed solution even when
applied to BSS with a great number of docking stations.

Index Terms—Dynamic Bike Repositioning, Reinforcement
Learning, Resource Allocation.

I. INTRODUCTION

B IKE Sharing Systems (BSS) have emerged as a pivotal
solution for enhancing the efficiency and environmental

sustainability of urban transportation, effectively addressing
the last mile challenge in cities [1]. As urban populations
swell, the demand for seamless integration of these systems
with existing transportation infrastructures becomes increas-
ingly vital. BSS, popular for their affordability and eco-
friendliness, offer commuters the convenience of short-term
bike rentals [2]–[4]. In recent years, the BSS landscape has
evolved, with cities adopting both docked and dockless models
to meet diverse urban mobility needs. While docked systems,
common in cities like London, Paris, and New York, depend on
fixed docking stations, dockless models offer greater flexibility
but at increased management costs. However, both models
grapple with the challenge of maintaining optimal bike avail-

Manuscript received XX XX, XX; revised XX XX, XX.
Alessandro Staffolani, Paolo Bellavista and Mirco Musolesi are with

the Department of Computer Science and Engineering, University of
Bologna, Bologna, Italy. E-mail: alessandro.staffolani, paolo.bellavista,
mirco.musolesi@unibo.it.

Alessandro Staffolani is also with the National Council of Research Italy,
ISTI-CNR, Pisa, Italy. E-mail: alessandro.staffolani@isti.cnr.it.

Victor-Alexandru Darvariu is with the Oxford Robotics Institute, Depart-
ment of Engineering Science, University of Oxford, Oxford, UK. E-mail:
victord@robots.ox.ac.uk. This work was performed while the author was
affiliated with University College London.

Mirco Musolesi is also with the Department of Computer Science, Univer-
sity College London, London, UK. E-mail: m.musolesi@ucl.ac.uk.

Truck asks for
a repositioning plan

Applies the bikes
repositioning plan

Agent

Observe docking
station and trucks

 status

Bike
Repositioning Plan Provides

1

2

3

4

Fig. 1. Graphical summary of the CABRA rebalancing pipeline for dock-
based dynamic bike repositioning. Trucks ask for a new repositioning. The
agent observes docking stations and truck status and then provides the bike
repositioning plan, which is applied to the system.

ability, particularly reducing shortage events, where users may
encounter empty stations or full lockers [5].

In response to these shortages, BSS operators employ
expensive yet potentially inefficient rebalancing techniques,
which can be broadly categorized into two main groups: user-
based and vehicle-based approaches. User-based approaches
involve providing incentives, often in the form of monetary
rewards, to users who relocate bikes from congested stations
to less congested ones. In contrast, vehicle-based approaches
utilize fleets of trucks that traverse the BSS coverage area,
both picking up bikes from congested stations and dropping
them off at less congested stations. Vehicle-based approaches
can be further classified into two subcategories: static and
dynamic approaches. The former focuses on applying rebal-
ancing policies exclusively during designated cooldown hours,
typically occurring at night. In contrast, dynamic approaches
constantly implement daily rebalancing policies to address
station imbalances effectively.

To further enhance the efficiency of these systems and
ensure their seamless integration into urban transportation
networks, there is a pressing need for more optimized and
proactive solutions [5] and not only static ones [6], [7]. This
involves leveraging real-time data to optimize the redistri-
bution of bikes across docking stations, as performed in an
increasing number of applications of machine learning for

https://orcid.org/0000-0003-0886-2548
https://orcid.org/0000-0001-9250-8175
https://orcid.org/0000-0003-0992-7948
https://orcid.org/0000-0001-9712-4090


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 2

transportation management [8], [9]. Such strategies aim to
proactively alleviate the impact of shortage events by ensuring
an appropriate distribution of bikes throughout the network.
Current rebalancing policies often rely on two aspects: (1)
predictions of future demand based on past data; and (2)
heuristic techniques for deciding reallocations. With respect
to the former, predictions may be inaccurate in cases where
demands diverge from historical trends, meaning bikes may be
reallocated to the wrong stations. Regarding the latter, heuristic
algorithms perform suboptimally, and better algorithms for
deciding a repositioning plan may exist.

Given the shortcomings of prior exact and heuristic meth-
ods, we set out to address this problem using reinforcement
learning, whose potential has been demonstrated recently for
a variety of discrete optimization problems [10]. This does not
require accurate predictions of future demands and can enable
the implicit discovery of heuristic algorithms that are more
powerful than existing alternatives through its reward-driven,
trial-and-error mechanism. We opt for a deep reinforcement
learning technique because the state space quickly increases
in larger cities, and function approximation is required for
effective generalization and scalability.

We term the proposed method Cost-aware Adaptive Bike
Reposition Agent (CABRA). Unlike traditional vehicle-based
approaches, CABRA efficiently learns and adapts reposition-
ing strategies by analyzing real-time demand patterns. The
learned policies allow our approach to mitigate shortages
proactively while being capable of reacting to rapid unseen
changes in demand. In addition, a key novelty of CABRA
is the joint minimization of shortage events and movement
costs, representing a substantially more realistic model for
BSS operators. CABRA employs deep reinforcement learning
complemented by pruning rules, thus achieving scalability to
over a thousand of docking nodes, as we demonstrate in the
following parts of this paper.
Our Contributions. The key contributions of this paper can
be summarized as follows:

• Dynamic bike reposition modeling for dock-based
BSS: We present an innovative approach to the bike
repositioning challenge in dock-based BSS, framing it
as a decision-making process. This involves deploying
trucks to rebalance bike availability across urban docking
stations. Our model utilizes an agent that processes both
the current system status and truck locations to formulate
an efficient repositioning plan, as detailed in Figure 1.
The plan specifies the number of bikes to be transported
and the target docking stations. Guided by a numerical
reward signal, the agent’s decisions aim to minimize
bike shortages and optimize truck repositioning times,
thereby enhancing route efficiency and reducing BSS
management costs. We formulate this problem within the
Markov Decision Process (MDP) framework and employ
deep reinforcement learning for its resolution.

• Extensive evaluation with comprehensive datasets:
We conduct a thorough evaluation of our solution us-
ing real-world datasets. It offers an in-depth view of
major BSS operators in Dublin, London, Paris, and
New York, including 10-minute interval observations of

docking station statuses and essential static information
such as station locations and capacities. This evaluation
rigorously tests the scalability and generalizability of
our solution across diverse BSS landscapes, providing
valuable experimental insights and firmly establishing its
applicability in practical scenarios.

Main Results. Our extensive experiments using real-world
datasets from major bike-sharing providers reveal that CABRA
consistently outperforms traditional methods in terms of op-
erational efficiency and cost optimization in three out of
four cities. Specifically, CABRA demonstrates a minimum
improvement over the second-best baseline of 27% in Dublin,
24% in London, and an increase of 42% in New York, even
though the latter BSS contains over a thousand stations. How-
ever, in environments with highly irregular demand patterns
such as Paris, our results indicate that greedy solutions emerge
as the only viable alternative to CABRA’s proactive and
adaptive strategy, which nevertheless performs comparably.

II. RELATED WORK

The bike repositioning problem, when viewed in a broader
scope, aligns with the intricate nature of combinatorial prob-
lems, necessitating sophisticated decision-making and opti-
mization strategies. For a comprehensive understanding of the
role of machine learning in combinatorial optimization, Bengio
et al. (2021) [10] offer an extensive survey, while Mazyavkina
et al. (2021) [11] focus specifically on the application of rein-
forcement learning in this area. Furthermore, the complexities
of the bike repositioning problem share notable parallels with
the challenges seen in the Travelling Salesman Problem (TSP)
and the Vehicle Routing Problem (VRP), which also involve
devising routes that visit a set of points. The applicability of
reinforcement learning to these problems is well-documented
in studies such as [12]–[14].

Delving specifically into bike repositioning, the primary
distinction lies between static and dynamic approaches. For
example, the authors of [5] formulated the static bicycle
repositioning problem as a VRP, introducing a Mixed Integer
Linear Program that optimizes user shortages and operational
costs. The effectiveness of their model was validated using
real-world data from Washington DC and Paris BSS. [15]
tackled the static bike repositioning problem in dock-based
BSS by framing it as a many-to-many pickup and delivery
problem, using a single truck per district. They proposed a
branch-and-cut algorithm to address the NP-hard problem,
supplemented by a tabu search to obtain an upper bound for the
optimal solution. The approach was evaluated using synthetic
data. Lastly, [16] combined inventory rebalancing with vehicle
routing for static BSS, formulating a Mixed Integer Program
that optimizes bike availability and rebalancing routes, demon-
strating superior performance over conventional methods with
real-world data.

In contrast, dynamic solutions to the bike repositioning
problem can be classified into different categories based on
the target system, such as dock-based and dockless systems,
as well as the repositioning approach employed, comprising
vehicle-based and user-based approaches. Orthogonally, so-
lutions may be divided into prediction-based methods, which



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 3

rely on demand prediction to inform subsequent actions, and
adaptive solutions that leverage deep reinforcement learning
agents. In the remainder of this section, we aim to provide
an overview of the latest related works in the field, exploring
the diverse range of dynamic solutions and highlighting their
strengths and limitations.

Chen et al. (2021) [17] proposed a multi-objective and
multi-agent reinforcement learning solution for dynamic dis-
patching of bikes in dockless bicycle sharing systems. They
utilized a Gated Graph Neural Network model to predict
the layout of bike stations and dispatching demand. The
predictions are fed to a reinforcement learning agent placed on
each truck that jointly optimizes for dispatching cost, the initial
load of the truck, workload balance among the trucks, and the
balance between the supply and demand of bikes. Moreover,
the authors of [18] proposed an incentive-based rebalancing
solution for dockless BSS. They utilized spatial and temporal
features to develop a hierarchical deep reinforcement learning
agent; their agent outputs monetary rewards to incentivize
users to pick up bikes from congested areas and travel to
non-congested parts of the city. Instead, the hybrid solution
formulated in [19] employs truck fleets for dynamic reposi-
tioning as well as user incentives. Their approach incorporates
a spatio-temporal clustering method to extract bike demand
hotspots, followed by a deep neural network called BikeNet
to forecast bike demand trends. Finally, the authors designed
a reinforcement learning method to divide rebalancing tasks
among users and the operating fleet of trucks in order to reduce
the number of unbalanced docking stations.

Wang et al. (2018) [20] and Chen et al. (2016) [21]
developed solutions for predicting the next levels of demand,
subsequently applying heuristic approaches to rebalance the
system. More specifically, [20] implemented a data-driven
approach to predict a safe rebalancing range for each station,
which is then utilized to rebalance bikes among full and
empty docking stations while minimizing the rebalancing cost.
[21] instead proposed a dynamic cluster-based framework
for over-demand prediction in order to compute a weighted
correlation among docking stations and to group those with
similar demand patterns. Subsequently, they utilized their
model to estimate the number of rented and returned bikes
in each cluster; finally, Monte Carlo simulation was adopted
to predict the probability that cluster demand will exceed
available resources.

Our solution aims at rebalancing bikes in the context of
dynamic repositioning for dock-based bike sharing systems.
Differently from [20], [21], our approach employs a reinforce-
ment learning agent in order to learn the long-term dynamics
of the demand for bikes. In addition, CABRA takes into
account and optimizes the time (i.e., the dispatching cost)
required for the repositioning of each truck. To the best of
our knowledge, this is the first attempt to address dynamic
bike repositioning for dock-based bike sharing systems with
such joint optimization of repositioning cost, which is also
evaluated on a large scale.

In fact, Li et al. (2018) [22] proposed a similar approach
to ours, in which they first created clusters of docking sta-
tions, and then used a deep reinforcement learning agent

with pruning rules for finding a repositioning policy that
minimizes customer loss over the long term. However, their
method lacks the concept of repositioning cost, which is an
important concern for operators. Furthermore, this model does
not account for repositioning time, unrealistically assuming
that they happen instantly. Instead, our work captures the fact
that trucks that are performing repositioning operations will
be unavailable while carrying out these movements. Finally,
their evaluation is performed on a substantially smaller scale,
using data for only one city (New York) and approximately
400 stations placed in the city center.

III. BACKGROUND & PROBLEM DEFINITION

In this section, we provide the reader with the neces-
sary background and discuss the fundamental reinforcement
learning concepts underlying CABRA. Then, we propose our
mathematical formulation of the dynamic bike repositioning
problem, which we aim to solve in the successive sections.

A. RL Background
Reinforcement Learning (RL) is a decision-making frame-

work in which problems are represented mathematically as
Markov Decision Processes (MDP) [23]. Typically, an agent
interacts with the environment (in our case the bike-sharing
system) at discrete time steps t = 0, 1, 2, ..., T . At every time
step t, the environment provides the agent with a represen-
tation of its current status (termed state) St ∈ S , based on
which the agent selects an action At ∈ A(St). S represents
the set of possible states, while A(St) represents the set of
possible actions available in state St. Subsequently, as a result
of the chosen action, the agent receives a reward (Rt+1) and
transitions to a new state (St+1).

The primary objective of the agent is to determine a policy
π(At|St), representing a probability distribution over actions
for a given state, with the goal of maximizing the return
(discounted sum of rewards):

Gt =

T∑
k=0

γkRt+k+1 (1)

where Rt+k+1 is the reward at time t + k + 1 and γ is a
discount factor with 0 ≤ γ ≤ 1 that weighs the impact
of immediate rewards and that of future ones differently.
Furthermore, given policy π, we introduce the state-value
function, V π(s) = Eπ[Gt|St = s], which represents the
expected return when following the policy π from a specific
state s onwards. We also define the action-value function as
Qπ(s, a) = Eπ[Gt|St = s,At = a], i.e., the expected return
when taking action a in state s then following the policy π.

In deep reinforcement learning, one approach for learning
the policy π is by parameterizing it using a deep neural
network with parameters θ and optimizing it through the
policy gradient theorem [24], which provides a gradient-based
approach to maximize the expected return. The policy gradient
theorem states that the gradient of the expected return with
respect to the policy parameters can be expressed as:

∇θJ(θ) = Eπθ

[∑
a

Qπθ (s, a)∇θπθ(a|s)

]
(2)



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 4

where ∇θπθ(a|s) denotes the partial derivatives of the policy
with respect to each of the parameters in θ.

B. Decision-Making Algorithm

In CABRA, we employed the Proximal Policy Optimization
(PPO) [25] method to effectively learn a policy. PPO is
a state-of-the-art policy optimization method that strikes a
balance between stable policy updates and policy performance
improvement. It achieves this by constraining the update step
to be within a trusted region to prevent drastic policy changes.
At its core, PPO leverages the policy gradient theorem. The
objective of PPO is to maximize the clipped surrogate objec-
tive, which can be defined as:

LPPO(θ) = Eπθold

[
min

(
rt(θ)Ât, clipPPOÂt

)]
(3)

where clipPPO = clip (rt(θ), 1− ϵ, 1 + ϵ), while rt(θ) repre-
sents the probability ratio between the updated policy πθ and
the old policy πθold . The advantage estimate Ât measures the
relative value of each action taken at time step t. The clipping
term within the surrogate objective ensures that the policy
update does not deviate excessively from the previous policy,
limiting the potential instability. By optimizing this objective
using stochastic gradient ascent, PPO has achieved significant
performance gains in a wide range of reinforcement learning
tasks such as games [25], [26] and multi-agent settings [27].

C. Problem Formulation

Formally, we are given a set of docking stations (also
referred to as nodes) D = {n1, ..., nK} of size K, a set of
trucks W = {w1, ..., wM} of size M , with K ≫ M , and
the system is equipped with H total bikes that may be hired.
Each node ni is described by its position pni

= ⟨xni
, yni

⟩ in
a spherical coordinate system (latitude and longitude), and by
two positive integer scalars: the capacity cni and the current
available bikes btni

, with 0 ≤ btni
≤ cni . Each truck wj is also

described by its position ptwj
= ⟨xt

wj
, ytwj

⟩ at time t and two
positive integer scalars: the capacity κwj

and the current load
ltwj

(the number of bikes in the truck), with 0 ≤ ltwj
≤ κwj

.
Finally, we denote the total number of bikes that are currently
loaned out by users at time t as λt.

Every time step t, each node observes the quantity otni

indicating the difference in the number of users willing to
start and those wishing to end a trip, corresponding to the user
demand. At each node, a number of shortage events eni ∈ N
may occur if one of the following conditions is met:

etni
=



otni
− btni

if btni
< otni

and otni
> 0,

|otni
| − (cni

− btni
) if cni

− btni
< |otni

|
and oni

< 0,
0 otherwise,

(4)
where otni

> 0 if in the time interval the number of started
trips is greater than the number of ended trips, and conversely
if otni

< 0. In other words, this clause corresponds to the
shortage event that occurs when the number of trips that are

ending at a given time step is larger than the number of
available slots (i.e., some users cannot drop off the bike at
the desired station).

During a time step, idle trucks are allowed to move among
the nodes and perform repositioning plans. A repositioning
plan mt

wj
for truck wj is defined by the tuple ⟨nt

target, q
t
wj

⟩,
with nt

target representing the target node where the truck will
move, and qtwj

the quantity to be repositioned by the truck.
The quantity is either negative if the truck needs to drop
qtwj

bikes or positive if the truck needs to collect them. The
feasibility of the repositioning is subject to constraints: for
a collect repositioning, the station must have sufficient bikes
currently docked and the truck must have the corresponding
spare capacity available; while, for a drop repositioning, the
station must not exceed capacity if the bikes currently in the
truck are unloaded.

Every time a truck performs a repositioning plan mt
wj

, it
will be busy for τ twj

number of time steps, also referred to as
repositioning time, which is given by:

τ twj
=

d(ptwj
, ptntarget

)

vmove
+ qtwj

∆loading (5)

where d(ptwj
, ptntarget

) is the spherical distance between the
position of the truck and the target docking station, while
vmove ∼ N (µmove, σmove) is the speed of movement of the
truck and ∆loading ∼ N (µloading, σloading) is the time duration
required for loading or unloading one bike to and from the
truck. Therefore, given a time horizon T , the objective is:

min

T∑
t=0

 K∑
i=1

etni
+

M∑
j=1

τ twj

 (6)

s.t. 0 ≤ btni
≤ cni

∀i ∈ D, (7)
0 ≤ ltwj

≤ κwj ∀j ∈ W, (8)
K∑
i=1

btni
+

M∑
j=1

ltwj
+ λt = H ∀t ∈ [0, T ]. (9)

Intuitively, over a time horizon of T steps, we need to
minimize the number of shortages observed on all the nodes
(first term of the sum) and the repositioning time, i.e., the
cost to apply the repositioning (second term of the sum),
while ensuring that the number of bikes at each node and
the load of each truck stay within their respective capacities.
Finally, the last constraint ensures that the total number of
bikes in the system (that are either available at stations, being
repositioned by the trucks, or currently loaned out to users)
stays constant. In order to simplify the presentation, without
lack of generality, we henceforth suppose that all trucks have
the same capacity κ and set the time step size to 10 minutes.

IV. METHODOLOGY

This section covers the key design aspects of the CABRA
approach. Subsequently, we will provide the mathematical
formulation of the MDP that is used by our agent to learn
repositioning strategies for dock-based BSS.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 5

A. Proposed Approach
The settings in which bike-sharing systems operate are typ-

ically large-scale. Usually, up to thousands of docking stations
are deployed in an urban area. Therefore, it is challenging to
approach the problem of repositioning bikes for the complete
set of docking stations at once. Moreover, a repositioning must
also consider the distance to the target node to avoid long
repositioning times, and thus high costs for the operators.

Our method involves deploying trucks across the city. At
each operational cycle, idle trucks participate in a structured
repositioning process, as depicted in Figure 1. This process
consists of four sequential steps: first, a truck signals the need
for a repositioning plan, actively engaging with the centralized
control system. Second, the control agent, armed with real-
time data, analyzes the current landscape – the status of
docking stations and the positioning of other trucks. Third,
using the gathered system information, the agent formulates
a repositioning plan, specifying the target node and bike
quantities to collect or drop. Finally, the truck commences the
repositioning task. It is worth pointing out that, depending on
the repositioning time, there might occur time steps in which
all trucks are busy and hence no actions are performed. In the
following subsection, we will discuss how the truck status is
reflected in the definition of the Markov Decision Process, in
particular in terms of state space.1

B. RL Settings
We now introduce the formalization of the repositioning

problem within CABRA as an MDP. This includes detailed
descriptions of the action and state spaces, the reward struc-
ture, and the proposed pruning rules for effectively reducing
the size of the action space.
State Space. The state space in CABRA encompasses com-
prehensive system-level information and granular details about
individual docking stations. At each timestep, it aggregates
data regarding the fleet of trucks W (specifically, their load and
position) and the availability of bikes at all docking stations
D. The state St is characterized by the following features:

• Status of nodes: is a one-dimensional vector concatenat-
ing two elements for each node - bike availability btni

and
position pni

.
• Current truck: is the one-hot encoded vector representing

the truck wj whose repositioning is being decided.
• Status of trucks: is a 4M -dimensional vector, where each

truck wj is represented by three attributes: current load
ltwj

, position ptwj
, and a busy flag that is set to 1 if the

truck is occupied in repositioning activities during the
current timestep, and 0 otherwise.

• Current time: is the one-hot encoding of the current hour,
day of the week, and month. This feature captures tem-
poral patterns in demand, reflecting seasonal variations.

All state features are normalized to fall within [0, 1].
Action Space. The agent, a logically centralized entity with a
complete overview of the system, selects repositioning param-
eters ⟨nt

target, q
t
wj

⟩, designating the target node and the quantity

1CABRA’s implementation available under MIT License at
https://github.com/AlessandroStaffolani/cabra-paper.

to be picked up or dropped off. Thus, the action space A(St)
is split into two components: the first comprises all nodes,
amounting to K possible choices in total; the second repre-
sents a range of integers from [−κ, κ], where negative values
denote drop actions and positive values indicate pick actions,
and zero represents no action. In the output layer, our policy
architecture reserves K units for deciding the target node and
2κ+ 1 units for determining the bike quantity, constructing a
separate discrete probability distribution for each of the two
components. Thus, a single policy parameterization is used for
determining both action components, which is advantageous
in terms of stability and inference speed compared to separate
parameterizations, the alternative design that appears in some
of the other RL works.
Reward Function. The reward function distinguishes between
beneficial and detrimental actions. Its optimization targets the
quantity in Equation 6 while adhering to constraints 7 and 8.
Recall the notion of a shortage event introduced in Section III,
which occurs when users cannot pick up or drop off their bike
at a given station. CABRA differentiates between two types
of shortages. The first, which we call agent-caused shortages,
arise as a result of the allocation strategy of the agent being
suboptimal. They are attributable to the agent (i.e., if it moves
bikes away from a station where a demand surge occurs at the
next step, or, conversely, fills all slots of a node where bikes
are about to be dropped off). The second type of shortages,
environment deficits, occur without them being attributable to
the explicit intervention of the agent. Distinguishing between
the two types of shortages helps isolate a signal for the agent
regarding the influence of the decisions it made and reduce
the noise in the feedback.

After each action, the system progresses to the subsequent
timestep, evaluates new demands, and records the occurrences
of agent-caused shortages etni

on every docking station,
environment deficits etenv, and repositioning time τ twj

. The
aggregate reward for actions related to truck wj is computed
as:

Rt(wj) = ωshortages

K∑
i=1

etni
+ ωenve

t
env + ωrepositioningτ

t
wj

(10)

where ωshortages, ωenv, and ωrepositioning are three scalars that
are used to weigh the three reward components. We note
that providing individual rewards for each truck, as opposed
to aggregating them for the entire system, better indicates
the effectiveness of each action and alleviates the credit
assignment problem. Furthermore, we note that the cost τ twj

is also normalized to be in [0, 1].
Pruning Rules. BSS operate on a vast scale, presenting sig-
nificant scalability challenges when applying machine learning
techniques. To mitigate these challenges, we have imple-
mented specific pruning rules aimed at reducing the action
space, thereby simplifying the problem. While pruning the
action space may in principle exclude the consideration of
optimal policies, our empirical findings underscore the effec-
tiveness of this strategy, particularly in handling large-scale
instances of the problem. Specifically, we introduce a capacity
threshold, δ, to define nodes as being in a critical state for a
given time step t if:



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 6

(a) Dublin (b) London (c) Paris (d) New York
Fig. 2. Distribution of docking stations across the four cities, where varying color intensities reflect the capacity of each station.

nt
critical =

{
1, if btni

< δ or cni
− btni

< δ,
0, otherwise. (11)

Intuitively, a node enters a critical state when the number
of available bikes or empty slots dips below this threshold,
indicating a high risk of imminent shortages. Our pruning
approach focuses on retaining only those nodes in a critical
state as potential targets for action. In cases where no nodes
meet this critical state criterion, the system compels the
agent to select the wait action. Notably, the computational
complexity of this pruning rule is linear in the number of
nodes K, and therefore it is inexpensive to compute. This
is in contrast with the more expensive pruning rule used
in [22], which relies on a neural-network based prediction of
future demand that is applied each time a decision is taken.
Additionally, we incorporate a policy that mandates alternating
pick and drop actions within the same truck. This alternating
action pattern is designed to optimize bike redistribution,
allowing trucks first to collect bikes from nodes with excess
supply and subsequently deliver them to nodes experiencing
a deficit. This method enhances the operational efficiency of
the redistribution process.

V. EXPERIMENTAL SETUP

A. Datasets

We conduct our evaluation of CABRA on extensive datasets
gathered from four major BSS in key European and American
cities: Dublin, London, Paris, and New York. These datasets
include detailed information about the locations and capacities
of docking stations, as well as continuous observations of
the number of bicycles and available spaces at each station
within these urban bike-sharing systems. These observations
are collected at intervals of approximately 10 minutes, with
our evaluation focusing on the large set of real-world data
from September 2021 to October 2022.

We filter out docking stations with capacities of less than
three bikes, as these are identified as test stations in the
raw data. Then, we have constructed the demand data by
aggregating the number of trips starting and ending at each
docking station. In addition, we calculate the percentage of
bikes in relation to the total number of docking stations
in each BSS: using this ratio, we set the initial number
of bikes for each station proportionally to its capacity and

TABLE I
DATASET SUMMARY FOR EACH OF THE EVALUATED CITIES.

City Docking Stations Avg. Node Capacity Bikes Percentage Avg. Initial Bikes

Dublin 117 31.91 38.01% 12.01
London 799 26.48 43.57% 11.52
Paris 1453 31.6 25.93% 8.17
New York 1765 31.89 44.34% 14.12

TABLE II
SUMMARY OF TRAINING SPLITS AND EVALUATION PROCEDURE.

Data Split 11 months training, 1 validation, 1 test (disjoint temporal split).
Model Selection Every 10 training iterations, assess reward on validation set.
Evaluation Report reward (and its sub-objectives) on test set.
Variability Training, validation, testing repeated across 10 random seeds.

the calculated percentage. Figure 2 visually illustrates the
distribution and capacities of docking stations in the four
cities under evaluation. Additionally, Table I presents high-
level summary statistics concerning these BSS.

B. Training and Evaluation Procedure

We now discuss the experimental procedure that was fol-
lowed, which is summarized in Table II. In our approach,
we temporally divide the datasets from the four cities into
training, validation, and evaluation sets. The training set
encompasses the first 11 months of data, while the validation
and evaluation sets both contain 1 month of data each. During
the training phase, our agent actively cycles through the data
in the training set, generating a series of rollouts. After each
rollout, we immediately execute a learning step, marking the
completion of a training iteration.

To periodically check the performance of our model, we
conduct a validation run on the validation set after every ten
training iterations. If the model achieves a new best score
during these validations, we save its configuration. Lastly, the
best model is run on the evaluation set in order to assess
its final performance on an unseen subset. To ensure the
robustness and statistical validity of our results, we perform
10 distinct runs. Each run starts with a different random
initialization of the agent’s initial state. This strategy not only
tests the effectiveness of our model under varied conditions,
but also strengthens the reliability of our findings.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 7

0 1000 2000 3000 4000
Step (10')

75000

50000

25000

0

C
um

ul
at

iv
e 

R
ew

ar
d City: Dublin

0 1000 2000 3000 4000
Step (10')

3

2

1

0

cu
m

ul
at

iv
e_

re
w

ar
d 1e6 City: London

0 1000 2000 3000 4000
Step (10')

4

2

0

cu
m

ul
at

iv
e_

re
w

ar
d 1e6 City: Paris

0 1000 2000 3000 4000
Step (10')

4

2

0

cu
m

ul
at

iv
e_

re
w

ar
d 1e6 City: New York

CABRA Constrained Greedy Constrained Random Constrained SA Do Nothing PPO-FS Random SA

Fig. 3. Cumulative reward over the evaluation set for the four cities (the higher, the better).

TABLE III
CABRA AGENT HYPERPARAMETERS (TOP) AND ENVIRONMENT PARAMETERS (BOTTOM). Fixed MEANS THAT THE PARAMETER VALUE IS UNIFORM

ACROSS ALL CITIES, WHILE THE OTHER PARAMETERS ARE SPECIFIC TO EACH CITY.

Parameter Fixed Dublin London Paris New York

Global gradient clipping [−0.5, 0.5] - - - -
Policy clip range [−0.2, 0.2] - - - -
Discount factor 0.9 - - - -
Entropy coefficient 0.05 - - - -
Train epochs 10 - - - -
Shared net units {512, 512} - - - -
Policy net units {128, 64} - - - -
Value net units {128, 64} - - - -
Agent learning rate - 0.0003 0.003 0.0003 0.003
Batch size - 512 512 512 128
Rollout size 2048 - - - -
Training iterations - 1200 1500 2000 800

System total bikes (H) - 1822 9351 23057 21387
Truck fleet dimension (M ) - 3 20 30 40
Truck capacity (κwj ) 20 - - - -
Truck movement speed average (µmove) 5m

s
- - - -

Truck movement speed standard deviation (σmove) 0.8 - - - -
Time for loading one bike average (µloading) 60s - - - -
Time for loading one bike standard deviation (σloading) 0.5 - - - -
Critical threshold relative to node’s capacity (δ) 0.2 - - - -

C. Agent and Environment Setup

In our PPO implementation, we opt for a shared network
architecture with several fully connected layers, each activated
by a hyperbolic tangent function. We then use two distinct
heads: one leads to the policy network, and the other to
the value network. This allows each network to specialize
in its respective function while benefiting from the shared
foundational processing. Furthermore, we fine-tune the hy-
perparameters of our agent for each of the four cities under
study. Please refer to Table III for the obtained hyperparameter
values.

We configure a range of truck parameters such as fleet size,
movement speed, repositioning speed, and capacity. For the
specific values we use in these configurations, please refer to
Table III. During our experiments across the four cities, we
maintain consistency in all environment settings except for the
fleet size, which is set proportionally to the number of nodes
to contain a truck per approximately 40 stations.

It is worth discussing how this parameter might impact
performance. For very low values on the spectrum of possible
fleet sizes, we expect that all repositioning methods would
perform very poorly, as the fluctuations in demand would

simply be too high for an agent to “catch up” through its
reallocations. On the other hand, high values would make
the problem very easy to solve, as we would have sufficient
redundancy to reallocate capacity even with a simple strategy.
The results we present in the next section show that the
differences between the reallocation strategies are significant,
positioning them away from either extreme. This suggests that
an effective repositioning strategy can have a practical impact.
We expect that similar comparative performance would be
observed for other middle ground values.

D. Baselines
In our evaluation, we assess the effectiveness of CABRA

by comparing it with several baseline strategies:
• Random: This approach randomly selects actions, uni-

formly sampling from the action space.
• Do Nothing: Under this strategy, the considered BSS

always opts for wait actions. This baseline highlights the
inefficiencies that arise when BSS are left to self-regulate.

• Constrained Random: Actions are randomly chosen from
the pruned action spaces. Details about the pruning rules
employed can be found in Section IV-B (RL Settings).



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 8

• Constrained Greedy: This method chooses actions from
the pruned spaces, prioritizing the target node that is
closest to the current truck and has the most critical state.
Then, it selects the highest quantity of bikes that can be
picked up or dropped off, which helps prevent shortages
in future time steps.

• Full Space PPO: This is a reinforcement learning agent
with the same state representation and policy design as
proposed in CABRA, but that does not apply any pruning
rules to the action spaces. We refer to this baseline as
PPO-FS.

• Simulated Annealing (SA): We consider the classic SA
metaheuristic [28], which perturbs the solution and uses
an adaptive acceptance criterion. We also include the
Constrained SA variant with a pruned action space.
These variants use the same modifications (i.e., action
space) and objective function (i.e., reward function) as
the RL methods; hence, the techniques have the same
information at decision time. The initial temperature and
cooling rate parameters were tuned and set to 105 and
0.999 (otherwise, the SA variants would reject solutions
consistently in later steps, leading to poor performance).

We would like to note that other works in this area, some
of which are based on machine learning and reinforcement
learning techniques, are incompatible with our problem for-
mulation. These were discussed in Section II. Notably, they
do not support a notion of repositioning cost, unrealistically
assume that repositioning actions happen instantly, and do not
consider the multiple conflicting objectives. Despite this, we
have made an effort to ensure that our technique is compared
to suitable baselines spanning heuristics, metaheuristics, and
standard RL methods. This aims to meaningfully and fairly
demonstrate the advantages of CABRA.

VI. EXPERIMENTAL RESULTS

Figure 3 showcases the average cumulative rewards for our
method compared to established baselines across the unseen
evaluation sets in four cities. Figure 4 details the performance
for each metric attained by CABRA and the baselines, in-
cluding average cumulative agent-caused shortages (first row),
environment deficits (second row), and costs (third row).
Table IV provides a concise summary of these performance
results, highlighting the average total scores for the reward
and the three metrics. We note that CABRA only explicitly
optimizes the reward function, while the three (competing)
metrics can be used to further judge the obtained trade-offs.

The results consistently demonstrate that the methodology
and design implemented in CABRA significantly surpass the
established baselines in three out of four cities tested. This
evidence underscores the efficacy of the pruning rules; notably,
PPO-FS does not exceed the performance of the Random
policy, except in Dublin. The smaller scale of Dublin’s BSS
network likely contributes to this exception. While the pruning
rules effectively address shortages, they also lead to a higher
average management cost. This cost arises because the rules
compel the agent to act — choosing an alternative to waiting
— whenever a node reaches a critical state. In contrast, other
methods can opt to wait without incurring costs.

These experiments show that standard SA generally per-
forms better than random reallocations due to its ability to re-
ject sampled modifications if they do not improve the solution.
Constrained SA performs better than SA overall, emphasizing
the effectiveness of the action space reduction. Constrained
SA shows particularly competitive performance for New York
(where it ranks second out of all methods). However, this
technique is fundamentally limited by its inability to adapt to
evolving demands and its failure to account for the long-term
consequences of its decisions.

Furthermore, the reported results indicate that ignoring the
issue of shortages in BSS is not viable, even when considering
that the Do Nothing approach incurs no management cost. This
method consistently yields the lowest performance and suffers
the highest incidence of shortages across all cities. Dublin
represents a unique case where the limited number of docking
stations results in comparable performance between the Do
Nothing, Random, and PPO-FS strategies.
Dublin. In the Dublin BSS, CABRA demonstrates a notable
improvement in total reward. Specifically, there is an increase
of at least 27% over methods that utilize the same pruning
rules, i.e., Constrained Greedy and Constrained Random. This
enhancement is even more pronounced, exceeding 273% com-
pared to the other methods. Moreover, CABRA consistently
excels in individual optimized metrics, outperforming other
methods that apply pruning rules. This showcases CABRA’s
superior ability to accurately predict bike demand, reduce
shortages, and optimize operational costs.
London. Similarly to the findings in Dublin, the BSS results in
London are significantly impacted by CABRA, demonstrating
comparable performance improvements despite the increase in
instance size from 117 to 799 docking stations. Our method
shows a notable improvement in total reward compared to
two constrained baselines, with increases of approximately
24% and 26%. Moreover, when compared to other baselines,
the improvement is at least 264%. This experiment also
reveals that the performance on individually optimized metrics
consistently surpasses the constrained baselines. We attribute
these superior scores to the proactive approach of our model,
which includes learning bike usage patterns and preemptively
addressing shortages.
Paris. The BSS in Paris presents a significant challenge
for CABRA, as our method was unable to surpass the per-
formance of the Constrained Greedy baseline. This lower
performance might be partially attributed to the BSS larger
size, encompassing 1453 docking stations, and the widespread
distribution of nodes throughout the city. It is interesting to
note that a comparative analysis of node distribution between
Paris and New York (as illustrated in Figures 2c and 2d)
reveals a key difference: in New York, nodes with higher
capacities, indicating areas of more intensive bike usage, are
concentrated in a smaller area, specifically on Manhattan
Island; conversely, these high-capacity nodes are scattered
across the city of Paris. Therefore, in order to better understand
the behavior of the different baselines in cities with different
topologies and traffic patterns, we analyze the regularity and
unpredictability of fluctuations across the four datasets using
approximate entropy (ApEn) [29]. The results, presented in



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 9

TABLE IV
AVERAGE TOTAL REWARDS, AGENT-CAUSED SHORTAGES, ENVIRONMENT DEFICITS, AND COSTS FOR CABRA AND BASELINE MODELS ACROSS FOUR

CITIES OVER THE EVALUATION SET.

Reward (↑) Agent-caused Shortages (↓) Environment Deficits (↓) Cost (↓)

Dublin CABRA −24149.57± 341.24 24719.9± 569.06 10 923.9± 268.62 1 731.45± 25.94
Constrained Greedy −39 938.43± 681.47 36 250.6± 920.91 20 407.5± 269.54 2 811.25± 2.64
Constrained Random −30 681.55± 400.63 27 892.0± 430.92 15 731.7± 262.41 2 007.7± 8.48
Constrained SA −37 452.47± 428.95 37 018.4± 582.1 17 894.8± 259.65 2 096.93± 7.5
Do Nothing −66 697.5± 0.0 127 281.0± 0.0 3057.0± 0.0 0.0± 0.0
PPO-FS −65 956.18± 1 321.19 122 378.6± 2 931.95 4 508.4± 689.9 516.95± 226.33
Random −71 312.45± 747.51 92 163.0± 1 164.57 24 069.2± 262.81 2 323.49± 6.78
SA −72 105.56± 1 309.58 93 255.3± 1 663.99 24 315.6± 548.13 2 324.61± 4.32

London CABRA −634729.21± 12461.17 859041.0± 23159.27 201 584.2± 6 582.05 7 249.01± 162.2
Constrained Greedy −790 073.32± 5 633.92 929 982.8± 7 525.9 320 369.7± 2 878.81 9 424.43± 31.09
Constrained Random −799 456.32± 2 881.23 970 955.8± 4 817.57 309 958.5± 1 456.96 8 039.84± 18.52
Constrained SA −979 540.73± 5 972.72 1 248 817.9± 6 854.88 351 051.5± 3 085.65 8 160.56± 13.97
Do Nothing −3 206 340.0± 0.0 6 189 640.0± 0.0 111 520.0± 0.0 0.0± 0.0
PPO-FS −2 208 448.18± 84 507.12 4 210 729.3± 169 899.67 99836.9± 3249.08 6 493.25± 317.01
Random −1 676 027.22± 11 852.75 2 606 066.2± 20 318.04 368 513.9± 2 761.33 8 960.44± 6.88
SA −1 673 464.09± 14 150.09 2 599 082.7± 26 592.32 369 445.0± 2 422.26 8 955.47± 7.34

Paris CABRA −2 106 609.27± 71 103.59 2 728 647.9± 81 016.71 737 581.1± 41 812.78 9 408.44± 88.7
Constrained Greedy −1794667.56± 14538.86 1771455.8± 15600.91 904 061.4± 9 831.56 9 756.51± 3.81
Constrained Random −2 514 256.04± 8 017.3 2 883 116.5± 10 085.19 1 068 014.2± 5 328.35 9 367.17± 3.36
Constrained SA −2 768 849.24± 8 745.22 3 349 873.2± 12 604.71 1 089 346.7± 6 363.87 9 131.88± 7.46
Do Nothing −5 569 530.0± 0.0 9 956 760.0± 0.0 591 150.0± 0.0 0.0± 0.0
PPO-FS −4 501 324.94± 277 077.88 7 961 912.17± 513 342.68 518438.5± 24829.88 3 860.72± 1 250.67
Random −3 218 415.59± 10 552.67 4 573 689.0± 21 512.72 926 946.1± 4 830.33 9 249.98± 5.2
SA −3 210 605.57± 12 105.36 4 561 506.4± 20 279.55 925 215.5± 3 287.27 9 253.73± 4.61

New York CABRA −237517.84± 16158.82 366400.9± 20412.51 54285.1± 6871.84 64.57± 1.72
Constrained Greedy −4 080 212.14± 112 474.32 6 191 078.1± 323 838.36 984 667.9± 63 961.54 10.38± 1.05
Constrained Random −3 810 758.45± 93 608.78 6 276 634.2± 250 494.62 672 437.5± 38 569.69 7.7± 0.57
Constrained SA −362 631.96± 20 394.61 505 970.5± 23 220.15 109 605.8± 8 934.8 61.81± 0.99
Do Nothing −5 432 880.0± 0.0 9 943 840.0± 0.0 460 960.0± 0.0 0.0± 0.0
PPO-FS −1 715 128.39± 1 091 528.35 3 032 675.9± 2 012 661.3 198 768.1± 87 744.52 44.69± 13.89
Random −740 104.16± 40 601.5 1 228 146.2± 68 078.08 126 001.7± 6 676.31 58.73± 0.95
SA −735 898.21± 41 161.16 1 214 591.0± 67 009.02 128 572.9± 8 014.0 59.62± 0.93

0 1000 2000 3000 4000
0

50000

100000

C
um

ul
at

iv
e 

Ag
en

t-
ca

us
ed

Sh
or

ta
ge

s

City: Dublin

0 1000 2000 3000 4000
0

2

4

6
1e6 City: London

0 1000 2000 3000 4000
0.00

0.25

0.50

0.75

1.00
1e7 City: Paris

0 1000 2000 3000 4000
0.00

0.25

0.50

0.75

1.00
1e7 City: New York

0 1000 2000 3000 4000
0

10000

20000

C
um

ul
at

iv
e 

E
nv

ir
on

m
en

t D
ef

ic
its

City: Dublin

0 1000 2000 3000 4000
0

100000

200000

300000

City: London

0 1000 2000 3000 4000
0.00

0.25

0.50

0.75

1.00
1e6 City: Paris

0 1000 2000 3000 4000
0.00

0.25

0.50

0.75

1.00
1e6 City: New York

0 1000 2000 3000 4000
Step (10')

0

1000

2000

C
um

ul
at

iv
e 

C
os

t

City: Dublin

0 1000 2000 3000 4000
Step (10')

0

2500

5000

7500

City: London

0 1000 2000 3000 4000
Step (10')

0

2500

5000

7500

10000 City: Paris

0 1000 2000 3000 4000
Step (10')

0

20

40

60

City: New York

CABRA Constrained Greedy Constrained Random Constrained SA Do Nothing PPO-FS Random SA

Fig. 4. Cumulative agent-caused shortages, environment deficits, and cost over the evaluation set for the four cities (the lower, the better).



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 10

TABLE V
AVERAGE APPROXIMATE ENTROPY OF THE EVALUATION SET FOR THE

FOUR CITIES.

City Avg. Approximate Entropy (ApEn)

Dublin 0.509± 0.036
London 0.518± 0.013
New York 0.535± 0.013
Paris 0.657± 0.014

Table V, show the average approximate entropy for each city,
calculated by determining the ApEn for the time series of the
demand at each node, and then averaging these values across
the entire city. Notably, Paris exhibits a considerably higher
approximate entropy compared to the other cities, indicating
more unpredictable data. This higher level of unpredictability
hinders the learning of efficient demand patterns, limiting
the effectiveness of proactive strategies and favoring reactive
greedy optimization approaches. We believe that this is the
most relevant reason why the Constrained Greedy baseline,
which prioritizes the most unbalanced nodes, emerges as the
most effective method in this context. Nevertheless, CABRA
still ranks second in terms of performance even in the Paris
scenario, which is challenging for BSS optimization methods.
New York. In this BSS, CABRA achieves a 42% gain in
total reward compared to the second-best method (Constrained
SA) and at least 311% over the other baselines. This result is
attained despite New York having the largest number of nodes
(1765). A key contributing factor is likely the concentration of
high-capacity docking stations coupled with the system’s low
approximate entropy. Interestingly, in this experiment, the cost
incurred by our solution is the highest, yet it effectively mini-
mizes shortages. However, this cost is relatively low compared
to the costs in other cities. This efficiency can be attributed to
the strategic concentration of docking stations, which enables
our agent to learn a few highly effective repositioning strate-
gies. These strategies optimize bike distribution throughout
the evaluation period, demonstrating the effectiveness of our
approach in a densely populated urban setting.

VII. CONCLUDING REMARKS

In this study, we introduced CABRA, an innovative, cost-
aware, and adaptive bike repositioning agent employing deep
reinforcement learning to dynamically optimize dock-based
BSS. CABRA has demonstrated its ability in learning bike
demand patterns and enabling proactive repositioning strate-
gies that effectively reduce shortage events and optimize
operational costs for BSS operators. The efficacy of CABRA
was rigorously validated using real-world datasets from major
providers in Dublin, London, Paris, and New York. The
results consistently showed that CABRA not only outperforms
traditional greedy approaches, but can also take repositioning
costs into account while scaling to large BSS.

This research not only shows the efficacy of reinforcement
learning as a powerful tool to enhance BSS performance, but
also highlights the important role of pruning rules in managing
large-scale operations in these contexts. Moreover, the study
sheds light on the influence of randomness in demand patterns

when utilizing machine learning, offering valuable insights for
system operators and urban planners in optimizing docking
station deployment to support adaptive strategies.

In large cities, a possible deployment strategy for CABRA
is to divide the city into different regions and perform the
optimization on each region separately. This hierarchical split-
ting provides a possibility for local authorities to operate the
bike sharing system for the zone(s) that they are responsible
for. Preliminary experiments with such a hierarchical design
revealed worse performance compared to a centralized model,
which has greater flexibility in resource reallocation. However,
such an approach may be necessary for practical and admin-
istrative reasons in real deployments.

Looking ahead, we aim to widen the applicability of our
findings across diverse bike-sharing models, and extend the
CABRA approach for compatibility with dockless BSS. We
also plan to implement and evaluate our approach in a live
BSS, providing a practical testbed for our algorithms. It
is worth noting that CABRA introduces minimal overhead,
enabling real-time decision-making in practical BSS scenarios.
Notably, even in the largest instance, the complete action
selection process - including state creation, application of
pruning rules, and forward pass in the neural network -
averages under 9 milliseconds, which is suitable for real-time
applications. Lastly, we aim to develop a decentralized model
based on multi-agent settings [30], and to offer a comparative
analysis of both methodologies.

ACKNOWLEDGMENTS

The data for this research were provided by the Consumer
Data Research Centre, an ESRC Data Investment, under
project identifiers CDRC 1316, ES/L011840/1, ES/L011891/1.
We thank Oliver O’Brien for his assistance with accessing the
data. We acknowledge a CINECA award under the ISCRA
initiative, which provided HPC resources and support.

REFERENCES

[1] J. Todd, O. O’Brien, and J. Cheshire, “A global comparison of bicycle
sharing systems,” Journal of Transport Geography, vol. 94, 2021.

[2] E. Fishman, S. Washington, and N. Haworth, “Bike Share: A Synthesis
of the Literature,” Transport Reviews, vol. 33, no. 2, pp. 148–165, 2013.

[3] O. O’Brien, J. Cheshire, and M. Batty, “Mining bicycle sharing data
for generating insights into sustainable transport systems,” Journal of
Transport Geography, vol. 34, pp. 262–273, 2014.

[4] Y. Zhang, D. Lin, and Z. Mi, “Electric fence planning for dockless bike-
sharing services,” Journal of Cleaner Production, vol. 206, pp. 383–393,
2019.

[5] T. Raviv, M. Tzur, and I. A. Forma, “Static repositioning in a bike-
sharing system: models and solution approaches,” EURO Journal on
Transportation and Logistics, vol. 2, no. 3, pp. 187–229, 2013.

[6] M. Dell’Amico, M. Iori, S. Novellani, and A. Subramanian, “The bike
sharing rebalancing problem with stochastic demands,” Transportation
Research Part B: Methodological, vol. 118, pp. 362–380, 2018.

[7] B. P. Bruck, F. Cruz, M. Iori, and A. Subramanian, “The static bike
sharing rebalancing problem with forbidden temporary operations,”
Transportation Science, vol. 53, no. 3, pp. 882–896, 2019.

[8] M. Batty, “Artificial intelligence and smart cities,” Environment and
Planning B: Urban Analytics and City Science, vol. 45, no. 1, pp. 3–6,
2018.

[9] A. Haydari and Y. Yılmaz, “Deep reinforcement learning for intelligent
transportation systems: A survey,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 1, pp. 11–32, 2020.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX XX 11

[10] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: a methodological tour d’horizon,” European Journal
of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.

[11] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Computers & Oper-
ations Research, vol. 134, p. 105400, 2021.

[12] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural com-
binatorial optimization with reinforcement learning,” in Proceedings of
the 5th International Conference on Learning Representations (ICLR’17)
Workshop Track, 2017.

[13] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[14] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” in Proceedings of the 7th International Conference
on Learning Representations (ICLR’19), 2019.

[15] D. Chemla, F. Meunier, and R. Wolfler Calvo, “Bike sharing systems:
Solving the static rebalancing problem,” Discrete Optimization, vol. 10,
no. 2, pp. 120–146, 2013.

[16] J. Schuijbroek, R. Hampshire, and W.-J. van Hoeve, “Inventory rebal-
ancing and vehicle routing in bike sharing systems,” European Journal
of Operational Research, vol. 257, no. 3, pp. 992–1004, 2017.

[17] J. Chen, K. Li, K. Li, P. S. Yu, and Z. Zeng, “Dynamic Bicy-
cle Dispatching of Dockless Public Bicycle-Sharing Systems Using
Multi-Objective Reinforcement Learning,” ACM Transactions on Cyber-
Physical Systems, vol. 5, no. 4, 2021.

[18] L. Pan, Q. Cai, Z. Fang, P. Tang, and L. Huang, “A Deep Reinforcement
Learning Framework for Rebalancing Dockless Bike Sharing Systems,”
Proceedings of the 33rd AAAI Annual Conference on Artificial Intelli-
gence (AAAI’19), vol. 33, no. 01, pp. 1393–1400, 2019.

[19] H. Zhu, T. Shou, R. Guo, Z. Jiang, Z. Wang, Z. Wang, Z. Yu, W. Zhang,
C. Wang, and L. Chen, “RedPacketBike: A Graph-Based Demand
Modeling and Crowd-Driven Station Rebalancing Framework for Bike
Sharing Systems,” IEEE Transactions on Mobile Computing, vol. 22,
no. 7, pp. 4236–4252, 2023.

[20] S. Wang, T. He, D. Zhang, Y. Shu, Y. Liu, Y. Gu, C. Liu, H. Lee,
and S. H. Son, “BRAVO: Improving the Rebalancing Operation in
Bike Sharing with Rebalancing Range Prediction,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT), vol. 2, no. 1, 2018.

[21] L. Chen, D. Zhang, L. Wang, D. Yang, X. Ma, S. Li, Z. Wu, G. Pan,
T.-M.-T. Nguyen, and J. Jakubowicz, “Dynamic Cluster-Based over-
Demand Prediction in Bike Sharing Systems,” in Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp’16), 2016, p. 841–852.

[22] Y. Li, Y. Zheng, and Q. Yang, “Dynamic Bike Reposition: A Spatio-
Temporal Reinforcement Learning Approach,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD’18), 2018, p. 1724–1733.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[24] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in Neural Information Processing Systems, vol. 12, 1999.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv:1707.06347, 2017.

[26] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv:1912.06680, 2019.

[27] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,
“The surprising effectiveness of PPO in cooperative multi-agent games,”
in Advances in Neural Information Processing Systems, vol. 35, 2022,
pp. 24 611–24 624.

[28] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[29] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, “A regularity
statistic for medical data analysis,” Journal of Clinical Monitoring,
vol. 7, no. 4, pp. 335–345, Oct 1991.

[30] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” Innovations in Multi-Agent Systems and
Applications - 1, pp. 183–221, 2010.

Alessandro Staffolani received MSc and PhD de-
grees in Computer Science and Engineering at Uni-
versity of Bologna, Italy. He is interested in learning-
based approaches for addressing the optimization of
resources by means of scheduling and orchestration,
in the context of distributed systems and network
infrastructure.

Victor-Alexandru Darvariu is a Postdoctoral Re-
searcher at the Oxford Robotics Institute, Depart-
ment of Engineering Science, University of Oxford.
He received his PhD in Computer Science from
University College London in 2023. His research
interests span reinforcement learning and planning,
combinatorial optimization, network science, graph
neural networks, game theory, and multi-agent sys-
tems. He investigates applications of these tech-
niques in areas as diverse as robotics, operations
research, computer systems, and causal inference.

Paolo Bellavista received MSc and PhD degrees in
computer science engineering from the University of
Bologna, Italy, where he is a full professor of dis-
tributed and mobile systems. His research activities
span from pervasive wireless computing to online
big data processing under quality constraints, from
edge cloud computing to middleware for Industry
4.0 applications. He has published around 300 pa-
pers, with around 120 of them in major international
journals in the above fields. He serves on several
Editorial Boards of leading IEEE and ACM journals.

Mirco Musolesi is Full Professor of Computer
Science at the Department of Computer Science at
University College London. He is also Full Professor
of Computer Science at the Department of Com-
puter Science and Engineering at the University of
Bologna. Previously, he held research and teaching
positions at Dartmouth, Cambridge, St Andrews and
Birmingham. The focus of his lab is on Machine
Learning/Artificial Intelligence and their applica-
tions to a variety of domains, including infrastructure
optimization.


	Introduction
	Related Work
	Background & Problem Definition
	RL Background
	Decision-Making Algorithm
	Problem Formulation

	Methodology
	Proposed Approach
	RL Settings

	Experimental Setup
	Datasets
	Training and Evaluation Procedure
	Agent and Environment Setup
	Baselines

	Experimental Results
	Concluding Remarks
	References
	Biographies
	Alessandro Staffolani
	Victor-Alexandru Darvariu
	Paolo Bellavista
	Mirco Musolesi


